首页> 外文OA文献 >Enhancement of power system stability using wide area measurement system based damping controller
【2h】

Enhancement of power system stability using wide area measurement system based damping controller

机译:基于广域测量系统的阻尼控制器提高电力系统稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contemporary power networks are gradually expanding incorporating new sources of electrical energy and power electronic based devices. The major stability issue in large interconnected power systems is the lightly damped interarea oscillations. In the light of growth of their incidents there are increased concerns about the effectiveness of current control devices and control systems in maintaining power system stability. This thesis presents a Wide Area Measurement System (WAMS) based control scheme to enhance power system stability. The control scheme has a hierarchical (two-level) structure comprising a Supplementary Wide-Area Controller (SWAC) built on top of existing Power System Stabilisers (PSSs). The SWAC's focus is on stabilising the critical interarea oscillations in the system while leaving local modes to be controlled entirely by local PSSs. Both control systems in the two levels work together to maintain system stability. The scheme relies on synchronised measurements supplied by Phasor Measurement Units (PMUs) through the WAMS and the only cost requirement is for the communication infrastructure which is already available, or it will be in the near future. A novel linear quadratic Gaussian (LQG) control design approach which targets the interarea modes directly is introduced in this thesis. Its features are demonstrated through a comparison with the conventional method commonly used in power system damping applications. The modal LQG approach offers simplicity and flexibility when targeting multiple interarea modes without affecting local modes and local controllers, thus making it highly suitable to hierarchical WAMS based control schemes. Applicability of the approach to large power systems is demonstrated using different scenarios of model order reduction. The design approach incorporates time delays experienced in the transmission of the SWAC's input/output signals. Issues regarding values of time delays and required level of detail in modelling time delays are thoroughly discussed. Three methods for selection of input/output signals for WAMS based damping controllers are presented and reviewed. The first method uses modal observability/controllability factors. The second method is based on the Sequential Orthogonalisation (SO) algorithm, a tool for the optimal placement of measurement devices. Its application is extended and generalised in this thesis to handle the problem of input/output signal selection. The third method combines clustering techniques and modal factor analysis. The clustering method uses advanced Principal Component Analysis (PCA) where its draw backs and limitations, in the context of power system dynamics' applications, are overcome. The methods for signal selection are compared using both small signal and transient stability analysis to determine the best optimal set of signals. Enhancement of power system stability is demonstrated by applying the proposed WAMS based control scheme on the New England test system. The multi-input multi-output (MIMO) WAMS based damping controller uses a reduced set of input/output signals and is designed using the modal LQG approach. Effectiveness of the control scheme is comprehensively assessed using both small signal and transient stability analysis for different case studies including small and large disturbances, changes in network topology and operating condition, variations in time delays, and failure of communication links.
机译:当代的电力网络正在逐步扩展,并纳入新的电能和电力电子设备。大型互连电力系统中的主要稳定性问题是区域间的轻微阻尼振荡。鉴于事件的增长,人们越来越关注电流控制装置和控制系统在保持电力系统稳定性方面的有效性。本文提出了一种基于广域测量系统(WAMS)的控制方案,以提高电力系统的稳定性。该控制方案具有分层(两级)结构,该结构包括建立在现有电源系统稳定器(PSS)之上的补充广域控制器(SWAC)。 SWAC的重点是稳定系统中的关键区域间振荡,同时使本地模式完全由本地PSS控制。这两级中的两个控制系统一起工作以保持系统稳定性。该方案依赖于相量测量单元(PMU)通过WAMS提供的同步测量,并且唯一的成本要求是针对已经可用的通信基础设施,否则将在不久的将来实现。本文提出了一种直接针对区域间模式的线性二次高斯(LQG)控制设计方法。通过与电力系统阻尼应用中常用的常规方法进行比较来证明其功能。当针对多个区域间模式而不影响本地模式和本地控制器时,模态LQG方法提供了简单性和灵活性,因此使其非常适合基于分层WAMS的控制方案。使用模型降阶的不同场景演示了该方法对大型电力系统的适用性。该设计方法结合了SWAC输入/输出信号传输中遇到的时间延迟。彻底讨论了有关时间延迟值和建模时间延迟所需的详细程度的问题。提出并回顾了用于基于WAMS的阻尼控制器的输入/输出信号选择的三种方法。第一种方法使用模态可观察性/可控制性因子。第二种方法基于顺序正交化(SO)算法,这是用于最佳放置测量设备的工具。本文将其应用扩展和推广,以解决输入/输出信号选择的问题。第三种方法结合了聚类技术和模态因子分析。聚类方法使用高级主成分分析(PCA),可以克服其在电力系统动力学应用中的缺点和局限性。使用小信号分析和瞬态稳定性分析对信号选择方法进行比较,以确定最佳的最佳信号集。通过将提出的基于WAMS的控制方案应用于新英格兰测试系统,可以证明提高了电力系统的稳定性。基于多输入多输出(MIMO)WAMS的阻尼控制器使用一组简化的输入/输出信号,并使用模态LQG方法进行设计。针对不同的案例研究,包括小干扰和大干扰,网络拓扑和操作条件的变化,时延的变化以及通信链路的故障,均使用小信号和瞬态稳定性分析来全面评估控制方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号