首页> 外文OA文献 >Heights on elliptic curves over number fields, period lattices, and complex elliptic logarithms
【2h】

Heights on elliptic curves over number fields, period lattices, and complex elliptic logarithms

机译:数字字段,周期格子和复椭圆对数上的椭圆曲线上的高度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents some major improvements in the following computations: a lower bound for the canonical height, period lattices, and elliptic logarithms. On computing a lower bound for the canonical height, we have successfully generalised the existing algorithm of Cremona and Siksek [CS06] to elliptic curves over totally real number fields, and then to elliptic curves over number fields in general. Both results, which are also published in [Tho08] and [Tho10] respectively, will be fully explained in Chapter 2 and 3. In Chapter 4, we give a complete method on computing period lattices of elliptic curves over C, whereas this was only possible for elliptic curves over R in the past. Our method is based on the concept of arithmetic-geometric mean (AGM). In addition, we extend our method further to find elliptic logarithms of complex points. This work is done in collaboration with Professor John E. Cremona; another version of this chapter has been submitted for publication [CT]. In Chapter 5, we finally illustrate the applications of our main results towards certain computations which did not work well in the past due to lack of some information on elliptic curves. This includes determining a Mordell{Weil basis, finding integral points on elliptic curves over number fields [SS97], and finding elliptic curves with everywhere good reduction [CL07]. A number of computer programs have been implemented for the purpose of illustration and verification. Their source code (written in MAGMA) can be found in Appendix A.
机译:本文对以下计算进行了一些重大改进:规范高度的下界,周期格和椭圆对数。在计算标准高度的下限时,我们已成功地将现有的Cremona和Siksek [CS06]算法推广到完全实数字段上的椭圆曲线,然后再推广到一般数量字段上的椭圆曲线。这两个结果分别发表在[Tho08]和[Tho10]中,将在第2章和第3章中进行详细说明。在第4章中,我们给出了计算C上椭圆曲线的周期格的完整方法,而这仅仅是过去的R上的椭圆曲线是可能的。我们的方法基于算术几何平均值(AGM)概念。此外,我们进一步扩展了方法,以找到复杂点的椭圆对数。这项工作是与约翰·克雷莫纳教授合作完成的;本章的另一版本已提交出版[CT]。在第5章中,我们最后说明了我们的主要结果在某些计算中的应用,这些计算过去由于缺少椭圆曲线的某些信息而无法很好地工作。这包括确定Mordell {Weil基,在数字字段上的椭圆曲线上找到积分点[SS97],以及在所有地方都具有良好约简的椭圆曲线[CL07]。为了说明和验证,已经实现了许多计算机程序。它们的源代码(用MAGMA编写)可以在附录A中找到。

著录项

  • 作者

    Thongjunthug Thotsaphon;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号