首页> 外文OA文献 >Joint channel and frequency offset estimation for wireless communications
【2h】

Joint channel and frequency offset estimation for wireless communications

机译:用于无线通信的联合信道和频率偏移估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis deals with joint channel and frequency offset estimation in many scenarios of wireless communications. In additive white Gaussian noise (AWGN) channels, a general literature survey of channel and frequency offset estimators based on the data-aided maximum likelihood (ML) principle is presented. The Cramer-Rao lower bounds (CRLB)s of the joint estimators are presented. Performance analysis of advanced frequency estimators recently proposed in the literature is provided. The performance of the estimators is compared for different application scenarios so that to get a better understanding of the differences, in terms of accuracy, complexity, frequency estimation range, signal to noise ratio (SNR) threshold. The dichotomous search (DS) frequency estimator is found to be the best practical choice. The DS frequency estimator emploies a fast Fourier transform (FFT)-based coarse search and dichotomous fine search of the periodogram peak to approximate the ML optimal estimator. This algorithm achieves the ML-like accuracy over a wide range of SNRs and throughout the wide frequency estimation range. As it relies entirely on linear operations, it is perfectly suitable for real-time implementation. In time-invariant frequency-selective channels, the joint data-aided estimation of channel and frequency offset for signals exploiting multipath diversity is considered. This diversity improves the estimation performance by searching for the peak of the combined periodograms of multipath components. The first estimator is based on the Bayesian approach and can be used when certain prior statistical knowledge about the channel is available. The second estimator is based on the ML approach and can operate when these channel statistics are not available. Both estimators employ the DS frequency estimation technique. These estimators have a high-accuracy performance with an estimation error very close to the CRLBs over a wide range of SNRs and throughout the wide frequency acquisition range. In frequency-flat time-variant fading channels, new joint data-aided channel and frequency offset estimators are derived. The proposed estimators are based on the basis expansion model (BEM) of the fading process and the DS frequency estimation technique. The first estimator is based on the Bayesian approach and exploits prior channel statistics to provide a high performance. The second estimator relies on the ML approach, and with a slightly lower accuracy, can operate when the prior statistics are unknown. The performance of the proposed joint estimators is examined for different scenarios in Rayleigh fading channels. The sensitivity of the Bayesian estimator to the knowledge of the Doppler frequency is investigated using such BEMs as Karhunen-Loeve (KL), discrete prolate spheroidal (DPS), generalised complex exponential (GCE), and B-spline (BS) functions. The BS-BEM is found to be the most robust and the best practical choice. In doubly-selective fading channels, a joint data-aided channel and frequency offset Bayesian estimator is proposed. The joint estimator is based on the BS-BEM representation of the fading process and the DS frequency estimation technique. Simulation results for different scenarios in Rayleigh fading channels show that the proposed estimator achieves a high accuracy performance, which is close to that with perfect knowledge of the frequency offset, over a wide range of SNRs, for different Doppler frequencies and throughout all the frequency acquisition range. Iterative turbo receivers are developed for frequency-flat time-variant fading channels which jointly perform channel and frequency offset estimation together with data detection and decoding. The estimation and detection are based on the BS-BEM of the fading time variations and use the DS frequency estimation. Soft information generated in the turbo decoder is used to improve the quality of detection in the subsequent iterations. Depending on how much knowledge of channel statistics is available, three versions of the joint estimator, the Bayesian, ML and regularised-ML (E-ML) are provided. Simulation results show that the proposed receivers provide as good performance as the corresponding ones operating with perfect knowledge of the frequency offset, and close to that operating with perfect channel knowledge.
机译:本文讨论了许多无线通信场景中的联合信道和频率偏移估计。在加性高斯白噪声(AWGN)信道中,提出了基于数据辅助最大似然(ML)原理的信道和频率偏移估计器的一般文献调查。提出了联合估计量的Cramer-Rao下界(CRLB)。提供了最近在文献中提出的高级频率估计器的性能分析。比较估计器在不同应用场景下的性能,以便更好地理解差异,包括准确性,复杂性,频率估计范围,信噪比(SNR)阈值。发现二分搜索(DS)频率估算器是最佳的实际选择。 DS频率估算器采用基于快速傅里叶变换(FFT)的粗略搜索和周期图峰值的二分法精细搜索,以逼近ML最佳估算器。该算法在较宽的SNR和较宽的频率估计范围内都达到了类似于ML的精度。由于它完全依赖于线性运算,因此非常适合实时实施。在时不变频率选择信道中,考虑了利用多径分集的信号的联合数据辅助信道和频率偏移估计。这种多样性通过搜索多径分量的组合周期图的峰值来提高估计性能。第一估计器基于贝叶斯方法,并且在可获得关于信道的某些先前统计知识时可以使用第一估计器。第二个估计器基于ML方法,并且在这些信道统计信息不可用时可以运行。两种估计器均采用DS频率估计技术。这些估计器具有高精度性能,在很大的SNR范围内以及整个很宽的频率采集范围内,估计误差都非常接近CRLB。在平坦频率的时变衰落信道中,得出了新的联合数据辅助信道和频率偏移估计器。所提出的估计器基于衰落过程的基本扩展模型(BEM)和DS频率估计技术。第一个估计器基于贝叶斯方法,并利用先前的信道统计信息来提供高性能。第二个估计器依赖于ML方法,并且精度稍低,可以在先验统计信息未知时进行操作。针对瑞利衰落信道中的不同场景,检查了建议的联合估计器的性能。使用诸如Karhunen-Loeve(KL),离散扁球体(DPS),广义复指数(GCE)和B样条(BS)函数之类的BEM,研究了贝叶斯估计器对多普勒频率知识的敏感性。 BS-BEM被认为是最可靠,最实用的选择。在双选衰落信道中,提出了一种联合数据辅助信道和频偏贝叶斯估计器。联合估计器基于衰落过程的BS-BEM表示和DS频率估计技术。在瑞利衰落信道中不同场景的仿真结果表明,所提出的估计器具有很高的准确度性能,在各种SNR范围内,针对不同的多普勒频率以及整个频率采集过程中,具有对频偏的完美了解,接近于此。范围。迭代式turbo接收机被开发用于频率平坦的时变衰落信道,该信道共同执行信道和频率偏移估计以及数据检测和解码。估计和检测基于衰落时间变化的BS-BEM,并使用DS频率估计。在turbo解码器中生成的软信息用于改善后续迭代中的检测质量。根据可用的信道统计知识,提供了联合估计器的三个版本,即贝叶斯,ML和正则化ML(E-ML)。仿真结果表明,所提出的接收机性能与相应的接收机具有良好的频率偏移知识,与接近的接收机具有良好的信道性能。

著录项

  • 作者

    Khal Rami;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号