首页> 外文OA文献 >Improved methods for pattern discovery in music, with applications in automated stylistic composition
【2h】

Improved methods for pattern discovery in music, with applications in automated stylistic composition

机译:改进的音乐模式发现方法,应用于自动风格合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational methods for intra-opus pattern discovery (discovering repeated patterns within a piece of music) and stylistic composition (composing in the style of another composer or period) can offer insights into how human listeners and composers undertake such activities. Two studies are reported that demonstrate improved computational methods for pattern discovery in music. In the first, regression models are built with the aim of predicting subjective assessments of a pattern's salience, based on various quantifiable attributes of that pattern, such as the number of notes it contains. Using variable selection and cross-validation, a formula is derived for rating the importance of a discovered pattern. In the second study, a music analyst undertook intra-opus pattern discovery for works by Domenico Scarlatti and Johann Sebastian Bach, forming a benchmark of target patterns. The performance of two existing algorithms and one of my own creation, called SIACT (Structure Induction Algorithm with Compactness Trawling), is evaluated by comparison with this benchmark. SIACT out-performs the existing algorithms with regard to recall and, more often than not, precision. A third experiment is reported concerning human judgements of music excerpts that are, to varying degrees, in the style of mazurkas by Frededric Chopin. This acts as an evaluation for two computational models of musical style, called Racchman-Oct2010 and Racchmaninof-Oct2010 (standing for RAndom Constrained CHain of MArkovian Nodes with INheritance Of Form), which are developed over two chapters. The latter of these models applies SIACT and the formula for rating pattern importance, using temporal and registral positions of discovered patterns from an existing template piece to guide the generation of a new passage of music. The precision and runtime of pattern discovery algorithms, and their use for audio summarisation are among topics for future work. Data and code related to this thesis is available on the accompanying CD or at http://www.tomcollinsresearch.net
机译:作品内模式发现(在音乐中发现重复的模式)和风格构成(以另一位作曲家或时期的作曲方式)的计算方法可以提供有关人类听众和作曲家如何进行此类活动的见解。据报道,两项研究证明了改进的音乐模式发现计算方法。首先,基于该模式的各种可量化属性(例如其包含的音符数量),建立回归模型,以预测该模式的显着性的主观评估。使用变量选择和交叉验证,可以得出一个公式,用于对发现的模式的重要性进行评级。在第二项研究中,一位音乐分析师对Domenico Scarlatti和Johann Sebastian Bach的作品进行了作品内模式发现,形成了目标模式的基准。通过与该基准进行比较,评估了两种现有算法以及我自己创建的一种算法,称为SIACT(具有紧凑性拖网结构的算法)的性能。 SIACT在召回率和精度方面通常优于现有算法。据报道,第三个实验涉及人类对音乐摘录的判断,这些判断在不同程度上类似于Frededric Chopin的mazurkas风格。这是对两个音乐风格的计算模型(称为Racchman-Oct2010和Racchmaninof-Oct2010)(代表具有形式继承性的马尔可夫节点的RAndom约束链)的评估,它们是在两章中开发的。这些模型中的后一个模型使用SIACT和评级模式重要性的公式,使用从现有模板作品中发现的模式的时间和注册位置来指导音乐新段落的产生。模式发现算法的精度和运行时间,以及它们在音频摘要中的使用,都是将来工作的主题。与本论文相关的数据和代码可从随附的CD或http://www.tomcollinsresearch.net上获得。

著录项

  • 作者

    Collins Tom;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号