首页> 外文OA文献 >Computer modeling and experimental work on the astrobiological implications of the martian subsurface ionising radiation environment
【2h】

Computer modeling and experimental work on the astrobiological implications of the martian subsurface ionising radiation environment

机译:火星地下电离辐射环境的天体生物学意义的计算机建模和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Any microbial life extant in the top meters of the martian subsurface is likely to be held dormant for long periods of time by the current permafrost conditions. In this potential habitable zone, a major environmental hazard is the ionising radiation field generated by the flux of exogenous energetic particles: solar energetic protons and galactic cosmic rays. The research reported here constitutes the first multidisciplinary approach to assessing the astrobiological impact of this radiation on Mars. A sophisticated computer model has been constructed de novo to characterise this complex subsurface ionising radiation field and explore the influence of variation in crucial parameters such as atmospheric density, surface composition, and primary radiation spectra. Microbiological work has been conducted to isolate novel cold-tolerant bacterial strains from the Dry Valleys environment of Antarctica, an analogue site to the martian surface, and determine their phylogenetic diversity and survival under high-dose gamma-ray exposure frozen at -79!C, a temperature characteristic of the martian mid-latitude permafrost. Original results are presented pertinent to microbial survival time, persistence of organic biomarkers, and calibration of the optically stimulated luminescence dating technique, as a function of depth. The model predicts a population of radiation resistant cells to survive in martian permafrost soil for 450,000 years at 2 m depth, the proposed drill length of the ExoMars rover. The Antarctic culturing studies identified representatives of four bacterial genera. The novel isolate Brevundimonas sp. MV.7 is found to show 99% 16S sequence similarity to cells discovered in NASA spacecraft assembly clean rooms, with the experimental irradiation determining this strain to suffer 10-6 population inactivation after a radiation dose of 7.5 kGy in martian permafrost conditions. Integrating the modelling and experimental irradiation, this research finds a contaminant population of such cells deposited just beneath the martian surface would survive the ambient cosmic radiation field for 117,000 years.
机译:当前的多年冻土条件使火星地下几米内存在的任何微生物生命都可能长时间处于休眠状态。在这个潜在的宜居区域中,主要的环境危害是由外源高能粒子通量产生的电离辐射场:太阳高能质子和银河系宇宙射线。本文报道的研究是评估辐射对火星的天体生物学影响的第一个多学科方法。从头开始构建了一个复杂的计算机模型,以表征此复杂的地下电离辐射场,并探索诸如大气密度,表面成分和一次辐射光谱等关键参数变化的影响。已经开展了微生物学工作,从南极干旱谷(火星表面的类似位置)的干旱谷环境中分离出新型耐寒细菌菌株,并确定了它们在-79!C冷冻的大剂量伽马射线照射下的系统发育多样性和存活率。是火星中纬度多年冻土的温度特征。原始结果与微生物的生存时间,有机生物标记物的持久性以及光学刺激的发光测年技术的校准有关,并随深度而变化。该模型预测,在拟议的ExoMars流浪者钻探长度2 m的深度上,辐射抗性细胞群体可以在火星的多年冻土中存活450,000年。南极的培养研究确定了四个细菌属的代表。新型分离株Brevundimonas sp。发现MV.7与在NASA航天器组装洁净室中发现的细胞显示99%的16S序列相似性,实验辐照确定该菌株在火星永久冻土条件下以7.5 kGy的辐射剂量遭受10-6种群灭活。结合建模和实验辐射,这项研究发现沉积在火星表面下方的此类细胞的污染物种群将在环境宇宙辐射场中生存117,000年。

著录项

  • 作者

    Dartnell Lewis R;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号