首页> 外文OA文献 >DARPA Urban Challenge, a C++ based platform for testing Path Planning Algorithms: An application of Game Theory and Neural Networks
【2h】

DARPA Urban Challenge, a C++ based platform for testing Path Planning Algorithms: An application of Game Theory and Neural Networks

机译:DaRpa Urban Challenge,一个基于C ++的测试路径规划算法的平台:博弈论和神经网络的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The DARPA Grand Challenge in which the Cornell Racing Team participates requires the completion of aSimulator, which purports all errors in the artificial intelligence path planning down below and back up.The simulator comes as the last layer in the top down approach followed by the Cornell Racing Team.The Strategic layer is charged of global route planning, the tactical layer of collision avoidance and maneuverplanning, while the operational layer controls lane tracking and safe following.The simulator is the last layer. Through a COBRA interface the C++ or C# version of the simulator will bereceiving commands from the Artificial Intelligence Strategic Layer concerning maneuvers such as Turn Left,Turn Right, Change Lane, Increase Speed, and Stop.The simulator induces from its current situation, using controls such as bounding boxes and the World class,pointing to every object in the World, a set of more detailed commands.Apart from writing a simplified version of the simulator in C++, we also concentrated my efforts onto findinga solution aside from dynamic programming for Path Planning and the Behavioral Modeling of Visible andNeighboring Vehicles on the road network.We have built an efficient and self-correcting C++ GUI Interface including some random moving vehicles aswell as a smart vehicle named Autosmart.The Path Planning algorithm is written and implemented although may be missing a more significant round oftesting.To do so, we are using the approach of game theory and artificial intelligence’s neural networks. We representthe world as nature, resulting in decisions independent of the drivers (types: turn left or right at the nextintersection); nature being in this case the DARPA Challenge organizers. Moreover the drivers chose theirbehaviors (aggressive, altruist) on the road and keep updating their anticipations about the other playersbehavior and types, as mentioned above.The end result is to train these neural networks to react to previously categorized behaviors and situations bystoring necessary information about the ‘game’.Every player runs its own network, although in our case we limited the simulation to one smart vehicle,Autosmart and 2 random vehicles; therefore by nature the algorithm the algorithm would lead to biasedresults.It is meant for simplicity since if not for programming the set of commands which lead to adequate behavior atintersections and on segments, such as being done for the smart vehicle; sometimes the random vehicles getinto trouble, being too much off the road network.In most cases, the simulator will self-correct their path however.
机译:康奈尔赛车队参加的DARPA大挑战赛需要完成aSimulator,该仿真器声称人工智能路径规划中的上下错误都存在,模拟器是自上而下方法的最后一层,紧随其后的是Cornell Racing团队:战略层负责全球路线规划,避免碰撞和机动计划的战术层,而操作层则控制车道跟踪和安全跟踪,​​最后一层是模拟器。通过COBRA界面,模拟器的C ++或C#版本将接收来自人工智能战略层的命令,这些命令涉及诸如左转,右转,变更车道,增加速度和停止等操作。例如边界框和World类,指向World中的每个对象,还有一组更详细的命令。除了用C ++编写简化版的模拟器外,我们还致力于研究除Path动态编程之外的解决方案。在道路网络上对可见和邻近车辆进行规划和行为建模。我们建立了一个高效且可自我校正的C ++ GUI界面,其中包括一些随机行驶的车辆以及名为Autosmart的智能车辆。虽然可能会缺少更重要的一轮测试。为此,我们使用博弈论和人工智能的方法神经网络。我们将世界描述为自然,从而做出独立于驱动程序的决策(类型:在下一个交叉点处左转或右转);在这种情况下,自然是DARPA挑战赛的组织者。此外,如上所述,驾驶员在道路上选择了自己的行为(积极进取,利他主义者),并不断更新对其他玩家行为和类型的期望。最终结果是训练这些神经网络,以通过存储必要的信息来对先前分类的行为和情况做出反应每个玩家都运行自己的网络,尽管在我们的案例中,我们将模拟限制为一辆智能车,Autosmart和2辆随机车;这是出于简化的目的,因为如果不对一组命令进行编程,则该命令集会导致交叉路口和路段上的适当行为,例如为智能车辆完成的操作;这是出于简化的目的。有时随机车辆会陷入麻烦,因为它们远离路网。在大多数情况下,模拟器会自行纠正其路径。

著录项

  • 作者

    Rubin Raphael;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号