首页> 外文OA文献 >Unbiased QML Estimation of Log-GARCH Models in the Presence of Zero Returns
【2h】

Unbiased QML Estimation of Log-GARCH Models in the Presence of Zero Returns

机译:零回报下Log-GaRCH模型的无偏QmL估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A critique that has been directed towards the log-GARCH model is that its log-volatility specification does not exist in the presence of zero returns. A common ``remedy" is to replace the zeros with a small (in the absolute sense) non-zero value. However, this renders Quasi Maximum Likelihood (QML) estimation asymptotically biased. Here, we propose a solution to the case where actual returns are equal to zero with probability zero, but zeros nevertheless are observed because of measurement error (due to missing values, discreteness approximisation error, etc.). The solution treats zeros as missing values and handles these by combining QML estimation via the ARMA representation with the Expectation-maximisation (EM) algorithm. Monte Carlo simulations confirm that the solution corrects the bias, and several empirical applications illustrate that the bias-correcting estimator can make a substantial difference.
机译:针对log-GARCH模型的一种批评是,在存在零收益的情况下不存在其对数波动性规范。一种常见的“补救措施”是用一个很小的(从绝对意义上来说)非零值替换零,但是这使得拟最大似然(QML)估计渐近地偏了。返回值等于零(概率为零),但是由于测量误差(由于缺失值,离散近似误差等),观测到零,该解决方案将零视为缺失值,并通过ARMA表示结合QML估计来处理这些零蒙特卡洛(Monte Carlo)仿真证实,该解决方案可以校正偏差,并且一些经验应用表明,偏差校正估计器可以产生很大的不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号