首页> 外文OA文献 >A new tool for the modeling of AI and machine learning applications: Random walk-jump processes
【2h】

A new tool for the modeling of AI and machine learning applications: Random walk-jump processes

机译:用于建模aI和机器学习应用程序的新工具:随机游走跳过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are numerous applications in Artificial Intelligence (AI) and Machine Learning (ML) where the criteria for decisions are based on testing procedures. The most common tools used in such random phenomena involve Random Walks (RWs). The theory of RWs and its applications have gained an increasing research interest since the start of the last century. [1]. In this context, we note that a RW is, usually, defined as a trajectory involving a series of successive random steps, which are, quite naturally, modeled using Markov Chains (MCs). MCs are probabilistic structures that possess the so-called “Markov property” – which implies that the next “state” of the walk depends on the current state and not on the entire past states (or history). This imparts to the structure practical consequential implications since it permits the modeler to predict how the chain will behave in the immediate and distant future, and to thus quantify its behavior. Although Random Walks (RWs) with single -step transitions have been extensively studied for almost a century, problems involving the analysis of RWs that contain interleaving random steps and random “jumps” are intrinsically hard. In this paper, we consider the analysis of one such fascinating RW, where every step is paired with its counterpart random jump. Apart from this RW being conceptually interesting, it also has applications in the testing of entities (components or personnel), where the entity is never allowed to make more than a pre-specified number of consecutive failures. The paper contains the analysis of the chain, some fascinating limiting properties, and simulations that justify the analytic results. The generalization for a researcher to use the same strategy to know when an AI scheme should switch from “Exploration” to “Exploitation” is an extremely interesting avenue for future research. As far as we know, the entire field of RWs with interleaving steps and jumps is novel, and we believe that this is a pioneering paper in this field, with vast potential in AI and ML.
机译:人工智能(AI)和机器学习(ML)中有许多应用,其中决策标准基于测试程序。在这种随机现象中使用的最常见工具包括随机游走(RW)。自上世纪初以来,RW的理论及其应用已引起越来越多的研究兴趣。 [1]。在这种情况下,我们注意到通常将RW定义为包含一系列连续随机步长的轨迹,这很自然地是使用马尔可夫链(MC)建模的。 MC是具有所谓“马尔可夫性质”的概率结构,这意味着步行的下一个“状态”取决于当前状态,而不取决于整个过去的状态(或历史)。这给结构带来了实际的后果,因为它允许建模者预测链在近期和遥远的将来将如何行为,从而量化其行为。尽管对具有单步过渡的随机游走(RW)进行了近一个世纪的广泛研究,但是涉及包含随机步长和随机“跳跃”交错的RW分析的问题从本质上讲很难。在本文中,我们考虑对一个如此引人入胜的RW进行分析,其中每一步都与其对应的随机跳跃配对。除了在概念上令人关注的RW外,它还可以用于实体(组件或人员)的测试中,在该测试中,实体绝不允许发生超过预定数量的连续故障。本文包含对链条的分析,一些令人着迷的限制性质以及证明分析结果合理的模拟。对于研究人员而言,使用相同的策略来了解AI方案何时应从“探索”转换为“利用”的概括是未来研究的一个非常有趣的途径。据我们所知,RW的整个领域都是交错的步伐和跳跃,我们相信这是该领域的开创性论文,在AI和ML方面具有巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号