首页> 外文OA文献 >Reconstruction of 3D medical images: a nonlinear interpolation technique for reconstruction of 3D medical images
【2h】

Reconstruction of 3D medical images: a nonlinear interpolation technique for reconstruction of 3D medical images

机译:重建3D医学图像:用于3D医学图像重建的非线性插值技术

摘要

[[abstract]]Three-dimensional medical images reconstructed from a series of two-dimensional images produced by computerized tomography, magnetic resonance imaging, etc., present a valuable tool for modern medicine. Usually, the interresolution between two cross sections is less than the intraresolution within each cross section. Therefore, interpolations are required to create a 3D visualization. Many techniques, including voxel-based and patch tiling methods, apply linear interpolations between two cross sections. Although those techniques using linear interpolations are economical in computation, they need much cross-sectional data and are unable to enlarge because of aliasing. Hence, the techniques that apply two-dimensional nonlinear interpolation functions among cross sections were proposed. The authors introduce the curvature sampling of the contour of a medical object in a CT (computerized tomography) image. Those sampled contour points are the candidates for the control points of Hermite surfaces between each pair of cross sections. Then, a nearest-neighbor mapping of control points between every two cross sections is used for surface formation. The time complexity of the mapping algorithm is O(m+n), where m and n are the numbers of control points of two cross sections. It is much faster than Kehtarnavaz and De Figueiredo's merge method, whose time complexity is O(n3m2) .
机译:[[摘要]]由计算机断层扫描,磁共振成像等产生的一系列二维图像重建的三维医学图像,为现代医学提供了有价值的工具。通常,两个横截面之间的分辨率小于每个横截面内的分辨率。因此,需要插值来创建3D可视化。许多技术,包括基于体素的方法和面片拼贴方法,都在两个横截面之间应用线性插值。尽管那些使用线性插值的技术在计算上很经济,但它们需要大量的横截面数据,并且由于混叠而无法放大。因此,提出了在截面之间应用二维非线性插值函数的技术。作者介绍了在CT(计算机断层扫描)图像中医疗对象轮廓的曲率采样。这些采样的轮廓点是每对横截面之间的Hermite表面控制点的候选项。然后,将每两个横截面之间的控制点的最近邻映射用于表面形成。映射算法的时间复杂度为O(m + n),其中m和n是两个横截面的控制点数。它比Kehtarnavaz和De Figueiredo的合并方法快得多,后者的时间复杂度为O(n3m2)。

著录项

  • 作者

    R. H. Ju;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 [[iso]]en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号