首页> 外文OA文献 >Towards Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers: Specific Procedure and General Non-Associativity Theorem
【2h】

Towards Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers: Specific Procedure and General Non-Associativity Theorem

机译:改进梯形模糊数交叉(融合)的梯形逼近:特定程序和一般非相关性定理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In some cases, our uncertainty about a quantity can be described by an interval of its possible values. If we have two or more pieces of interval information about the same quantity, then we can conclude that the actual value belongs to the intersection of these intervals.In general, we may need a fuzzy number to represent our partial knowledge. A fuzzy number can be viewed as a collection of intervals (alpha-cuts) corresponding to different degrees alpha from [0,1]. In practice, we can only store finitely many alpha-cuts. Usually, we only store the lower and upper alpha-cuts (corresponding to alpha = 0 and alpha = 1) and use linear interpolation -- i.e., use trapezoidal fuzzy numbers. However, the intersection of two trapezoidal fuzzy numbers is, in general, not trapezoidal. One possible approach is to simply take an intersection of lower and upper alpha-cuts, but this approach underestimates the resulting membership function.In this paper, we propose a more accurate approach that uses the Least Squares Method to provide a better linear approximation to the resulting membership function.While this method provides a more accurate trapezoidal description of the intersection, it has its own drawbacks: e.g., this approximation method makes the corresponding u22knowledge fusionu22 operation non-associative. We prove, however, that this u22drawbacku22 is inevitable: specifically, we prove that a perfect solution is not possible, and that any improved trapezoidal approximation to intersection (fusion) of trapezoidal fuzzy numbers leads to non-associativity.
机译:在某些情况下,我们对数量的不确定性可以用其可能值的间隔来描述。如果我们有两个或两个以上有关相同数量的区间信息,则可以得出结论,实际值属于这些区间的交集。通常,我们可能需要一个模糊数来表示我们的部分知识。模糊数可以看作是对应于[0,1]的不同度α的间隔(α割)的集合。实际上,我们只能存储有限数量的Alpha切割。通常,我们仅存储上下限alpha切割(对应于alpha = 0和alpha = 1),并使用线性插值法-即使用梯形模糊数。但是,两个梯形模糊数的交点通常不是梯形。一种可能的方法是简单地采用下限和上限的alpha交集,但是这种方法会低估所得的隶属函数。在本文中,我们提出了一种更精确的方法,该方法使用最小二乘方法为模型提供更好的线性近似。虽然此方法提供了更精确的交点梯形描述,但它也有其自身的缺点:例如,这种近似方法使相应的 u22knowledgefusion u22操作不具有关联性。但是,我们证明这是不可避免的:具体地说,我们证明不可能有完美的解决方案,梯形模糊数的交点(融合)的任何改进的梯形近似都会导致非缔合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号