首页> 外文OA文献 >Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis
【2h】

Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis

机译:检查应用高性能遗传数据特征选择和分类算法进行结肠癌诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background and Objectives: This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process.\udMethods: In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these.\udResults: It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Sup- port Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%).\udConclusions: It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society.
机译:背景与目的:本文研究了用于结肠癌诊断的高性能遗传数据特征选择和分类算法的准确性和效率(时间复杂度)。这项研究的需求源于对精确和高效算法的迫切和不断增长的需求。结肠癌是全球范围内主要的死亡原因,因此,对癌症组织进行快速,及时的专业鉴定和分类,以确保快速发现疾病并加快药物发现过程,至关重要。 udMethods:在这项研究中,提出并实施了一种三阶段方法:第一阶段和第二阶段检查了分别使用的特征选择算法和分类算法,第三阶段检查了两者结合使用的性能。\ ud结果:在第一阶段中,粒子群优化(PSO)算法以结肠数据集作为特征选择(选择了29个基因)表现最佳,在第二阶段中,支持向量机(SVM)算法的表现优于其他分类,准确率几乎达到86%。从第三阶段还发现,PSO和SVM的组合使用在准确性和性能上优于其他算法,并且在时间分析方面更快(94%)。\ ud结论:结论是在分类之前应用特征选择算法与单独应用后者相比,该算法的准确性更高。这个结论对产业和社会都是重要和重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号