首页> 外文OA文献 >Radio Location of Partial Discharge Sources: A Support Vector Regression Approach
【2h】

Radio Location of Partial Discharge Sources: A Support Vector Regression Approach

机译:局部放电源的无线电定位:支持向量回归方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Partial discharge (PD) can provide a useful forewarning of asset failure in electricity substations. A significant proportion of assets are susceptible to PD due to incipient weakness in their dielectrics. This paper examines a low cost approach for uninterrupted monitoring of PD using a network of inexpensive radio sensors to sample the spatial patterns of PD received signal strength. Machine learning techniques are proposed for localisation of PD sources. Specifically, two models based on Support Vector Machines (SVMs) are developed: Support Vector Regression (SVR) and Least-Squares Support Vector Regression (LSSVR). These models construct an explicit regression surface in a high dimensional feature space for function estimation. Their performance is compared to that of artificial neural network (ANN) models. The results show that both SVR and LSSVR methods are superior to ANNs in accuracy. LSSVR approach is particularly recommended as practical alternative for PD source localisation due to it low complexity.
机译:部分放电(PD)可以为变电站的资产故障提供有用的预警。由于电介质的初期缺陷,很大一部分资产容易受到局部放电的影响。本文研究了一种廉价的方法,可使用廉价的无线电传感器网络对PD进行不间断的监视,以采样PD接收信号强度的空间模式。提出了机器学习技术以用于PD源的本地化。具体来说,开发了两种基于支持向量机(SVM)的模型:支持向量回归(SVR)和最小二乘支持向量回归(LSSVR)。这些模型在高维特征空间中构造了显式回归曲面,以进行功能估计。将其性能与人工神经网络(ANN)模型的性能进行比较。结果表明,SVR和LSSVR方法在准确性上均优于ANN。特别推荐将LSSVR方法作为PD源定位的实用替代方法,因为它的复杂度较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号