首页> 外文OA文献 >Fault classification using an Artificial Neural Network based on Vibrations from a Reciprocating Compressor
【2h】

Fault classification using an Artificial Neural Network based on Vibrations from a Reciprocating Compressor

机译:基于往复式压缩机振动的人工神经网络故障分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade performance, consume additional energy, and even cause severe damage to the machine. This paper will develop an automated approach to condition classification of a reciprocating compressor based on vibration measurements. Both the time domain and frequency domain techniques have been applied to the vibration signals and a large number of candidate features have been obtained based on previous studies. A subset selection method has then been used to configure a probabilistic neural network (PNN), with high computational efficiency, for effective fault classifications. The results show that a 95.50% correct classification between four different faulty cases is the best result when using a subset of frequency feature, whereas a 93.05% rate is the best for the subset from the time domain.
机译:往复式压缩机在工业上被广泛用于各种目的,并且它们中发生的故障会降低性能,消耗更多的能量,甚至对机器造成严重损害。本文将基于振动测量结果开发一种自动方法来对往复式压缩机进行状态分类。时域和频域技术都已应用于振动信号,并且基于先前的研究已经获得了大量候选特征。然后,使用子集选择方法来配置具有高计算效率的概率神经网络(PNN),以进行有效的故障分类。结果表明,当使用频率特征子集时,在四个不同故障案例之间进行95.50%正确分类是最好的结果,而对于时域子集而言,93.05%的正确率是最好的。

著录项

  • 作者

    Ahmed Mahmud; Gu Fengshou;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号