首页> 外文OA文献 >Object Detection and Tracking in Wide Area Surveillance Using Thermal Imagery
【2h】

Object Detection and Tracking in Wide Area Surveillance Using Thermal Imagery

机译:基于热像的广域监视中的目标检测与跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main objective behind this thesis is to examine how existing vision-based detection and tracking algorithms perform in thermal imagery-based video surveillance. While color-based surveillance has been extensively studied, these techniques can not be used during low illumination, at night, or with lighting changes and shadows which limits their applicability. The main contributions in this thesis are (1) the creation of a new color-thermal dataset, (2) a detailed performance comparison of different color-based detection and tracking algorithms on thermal data and (3) the proposal of an adaptive neural network for false detection rejection.Since there are not many publicly available datasets for thermal-video surveillance, a new UNLV Thermal Color Pedestrian Dataset was collected to evaluate the performance of popular color-based detection and tracking in thermal images. The dataset provides an overhead view of humans walking through a courtyard and is appropriate for aerial surveillance scenarios such as unmanned aerial systems (UAS). Three popular detection schemes are studied for thermal pedestrian detection: 1) Haar-like features, 2) local binary pattern (LBP) and 3) background subtraction motion detection. A i) Kalman filter predictor and ii) optical flow are used for tracking. Results show that combining Haar and LBP detections with a 50% overlap rule and tracking using Kalman filters can improve the true positive rate (TPR) of detection by 20%. However, motion-based methods are better at rejecting false positive in non-moving camera scenarios. The Kalman filter with LBP detection is the most efficient tracker but optical flow better rejects false noise detections. This thesis also presents a technique for learning and characterizing pedestrian detections with u22heat mapsu22 and an object-centric motion compensation method for UAS. Finally, an adaptive method to reject false detections using error back propagation using a neural network. The adaptive rejection scheme is able to successfully learn to identify static false detections for improved detection performance.
机译:本文的主要目的是研究现有的基于视觉的检测和跟踪算法在基于热图像的视频监控中的性能。尽管已经对基于颜色的监视进行了广泛的研究,但是这些技术不能在低照度,夜间或光线变化和阴影受限的情况下使用。本论文的主要贡献是:(1)创建了一个新的色热数据集;(2)对基于颜色的不同色检测和跟踪算法对热数据进行了详细的性能比较;(3)提出了自适应神经网络的建议。由于没有可公开获取的热视频监控数据集,因此收集了新的UNLV热色行人数据集以评估热图像中基于颜色的流行检测和跟踪性能。该数据集提供了人类走过院子的俯视图,并且适用于诸如无人航空系统(UAS)之类的空中监视场景。针对热行人检测,研究了三种流行的检测方案:1)类似Haar的特征,2)本地二进制模式(LBP)和3)背景减法运动检测。 i)卡尔曼滤波器预测器和ii)光流用于跟踪。结果表明,将Haar和LBP检测与50%重叠规则结合在一起,并使用Kalman滤波器进行跟踪,可以将检测的真实阳性率(TPR)提高20%。但是,基于运动的方法在非运动相机场景中更能拒绝误报。具有LBP检测功能的卡尔曼滤波器是最有效的跟踪器,但是光流更好地拒绝了虚假噪声检测。本文还提出了一种利用热图 u22来学习和表征行人检测的技术以及一种用于UAS的以物体为中心的运动补偿方法。最后,一种自适应方法可以通过使用神经网络的错误反向传播来拒绝错误检测。自适应拒绝方案能够成功学习识别静态错误检测,从而提高检测性能。

著录项

  • 作者

    Bhusal Santosh;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号