首页> 外文OA文献 >Ionic Electroactive Polymer Devices: Physics-Based Modeling with Experimental Investigation and Verification
【2h】

Ionic Electroactive Polymer Devices: Physics-Based Modeling with Experimental Investigation and Verification

机译:离子电活性聚合物器件:基于物理的建模与实验研究和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The primary focus of this study is to examine, understand, and model ionic electroactive polymer based systems in attempt to further develop this field of study. Physics-based modeling is utilized, as opposed to empirical modeling, to achieve a deeper insight to the underlying physics. The ionic electroactive polymer system of primary interest in this study is ionic polymer-metal composite (IPMC) devices. Other similar devices, such as anion-exchange membrane (AEM) type actuators and flow battery systems are also investigated using the developed model. The underlying physics are in the studies of transport phenomenon for describing the ionic flow within the polymer membrane, solid mechanics for describing deformation of the given devices, electric potential and electric currents physics for the voltage across the devices, and ion exchange along with chemical reaction in case of flow batteries. Specific details of these systems are analyzed, such as geometrical and electrode effects. The results in modeling IPMC actuators and sensors have been used to experimentally validate the modeling framework and have provided keen insight to the underlying physics behind these transduction phenomena. The developed models will benefit researchers in these fields and are expected to provide a better understanding of these systems. This study provides a framework for design and fabrication of advanced, highly integrated, ionic migration and exchange polymer-composite devices.In particular, this work focuses on finite element simulations of ionic electroactive polymers using COMSOL Multiphysics versions 4.3 through 5.2, with primary focus on ionic polymer-metal composite devices. The basic framework model for IPMCs is of greatest importance and is the initial focus of this work. This is covered in Chapter 3 in detail with experimental comparison of results. Other aspects of interest are geometrical and electrode effects of IPMCs, which are discussed in Chapter 3 and Chapter 4. Applications of the modeling framework, such as in modeling other electroactive polymer actuators is covered in Chapter 5 and Chapter 6, which includes simulations of electrodeless artificial cilia actuators in lithium chloride (LiCl) electrolyte, discussion and modeling of all-Vanadium oxidation reduction (redox) flow battery devices, fluid-structure interactions with IPMCs, and discussion of implementing the modeling framework for anion type IPMCs. Two publications from Journal of Applied Physics and one paper accepted for publication from the Marine Technology Society Journal are included herein, with publisher permission. These papers focus directly on topics of interest to this work. They underwent several revisions and are included in full or large excerpt form to provide the most accurate description and discussion of these topics. The author of this dissertation is first author and did much of the work of one of the three papers; specific author contributions for the other two papers are detailed before each paper is presented, in which the author of this dissertation was primarily responsible for finite element simulations, discussion, and revisions. Chapter 7 and Chapter 8 contain conclusions and recommendations for future work, respectively.
机译:这项研究的主要重点是检查,理解和建模基于离子电活性聚合物的系统,以期进一步发展该研究领域。与基于经验的建模相反,利用基于物理的建模来更深入地了解基础物理。这项研究中主要关注的离子电活性聚合物系统是离子聚合物-金属复合材料(IPMC)装置。使用开发的模型还研究了其他类似的设备,例如阴离子交换膜(AEM)型执行器和液流电池系统。潜在的物理学领域包括传输现象的研究(用于描述聚合物膜内的离子流),固体力学(用于描述给定器件的变形),器件两端的电压的电势和电流物理学以及离子交换以及化学反应如果是液流电池。分析了这些系统的具体细节,例如几何和电极效应。对IPMC执行器和传感器进行建模的结果已用于通过实验验证建模框架,并为这些转导现象背后的潜在物理学提供了敏锐的洞察力。开发的模型将使这些领域的研究人员受益,并有望对这些系统有更好的了解。这项研究为高级,高度集成的离子迁移和交换聚合物复合材料器件的设计和制造提供了框架,尤其是这项工作着重于使用COMSOL Multiphysics 4.3至5.2版本对离子电活性聚合物进行有限元模拟。离子聚合物金属复合器件。 IPMC的基本框架模型至关重要,是这项工作的最初重点。第3章将详细介绍实验结果。感兴趣的其他方面是IPMC的几何效应和电极效应,将在第3章和第4章中讨论。建模框架的应用,例如在对其他电活性聚合物致动器建模时,将在第5章和第6章中介绍,其中包括无电极的仿真。氯化锂(LiCl)电解质中的人工纤毛致动器,全钒氧化还原(redox)液流电池装置的讨论和建模,与IPMC的流体-结构相互作用以及讨论实现阴离子型IPMC的建模框架的讨论。经出版者许可,本文中包括两本来自《应用物理学杂志》的出版物和一本被《海洋技术学会杂志》接受接受发表的论文。这些论文直接关注该工作感兴趣的主题。它们经过了几次修订,并以完整或大摘要形式包含在内,以提供对这些主题的最准确的描述和讨论。本论文的作者是第一作者,完成了三篇论文之一的大部分工作。在介绍每篇论文之前,先详细介绍其他两篇论文的具体作者贡献,其中本论文的作者主要负责有限元模拟,讨论和修订。第7章和第8章分别包含对未来工作的结论和建议。

著录项

  • 作者

    Stalbaum Tyler Paul;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号