首页> 外文OA文献 >Multicomponent Diffusion in Two-Temperature Magnetohydrodynamics
【2h】

Multicomponent Diffusion in Two-Temperature Magnetohydrodynamics

机译:双温磁流体动力学中的多组分扩散

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zerofield form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations.
机译:最近在多温度混合气中多组分扩散的流体力学理论[J. D. Ramshaw,J。非伊库利布。 Thermodyn。 [18,121(1993)]被概括为包括磁场B中带电物质对速度的洛伦兹力。这种概括被用来扩展先前对双温多组分等离子体中双极性扩散的处理[J. Chem。Chem。,18,121(1993)]。 D.Ramshaw和C.H.Chang,等离子化学。等离子工艺。 13、489(1993)],其中B和电流密度不为零。从而得出单温度和双温度多组分磁流体动力学(MHD)中物质扩散通量(包括热扩散)的一般表达式。结果表明,通过引入依赖于B的广义二元扩散张量,可以在B存在的情况下保留Stefan-Maxwell方程的常规零场形式。提出了一种自洽的有效二元扩散近似值,为扩散提供了明确的近似表达式通量。利用了由于电子质量小的简化来获得理想的MHD描述,其中电子扩散系数下降,电阻效应消失,电场减小到特别简单的形式。此描述应非常适合于数值计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号