首页> 外文OA文献 >Capillary-Driven Flows Along Rounded Interior Corners
【2h】

Capillary-Driven Flows Along Rounded Interior Corners

机译:沿着圆形内角的毛细管驱动流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of low-gravity isothermal capillary flow along interior corners that are rounded is revisited analytically in this work. By careful selection of geometric length scales and through the introduction of a new geometric scaling parameter Tc, the Navier–Stokes equation is reduced to a convenient∼O(1) form for both analytic and numeric solutions for all values of corner half-angle α and corner roundedness ratio λ for perfectly wetting fluids. The scaling and analysis of the problem captures much of the intricate geometric dependence of the viscous resistance and significantly reduces the reliance on numerical data compared with several previous solution methods and the numerous subsequent studies that cite them. In general, three asymptotic regimes may be identified from the large second-order nonlinear evolution equation: (I) the u27sharp-corneru27 regime, (II) the narrow-corner u27rectangular sectionu27 regime, and (III) the u27thin filmu27 regime. Flows are observed to undergo transition between regimes, or they may exist essentially in a single regime depending on the system. Perhaps surprisingly, for the case of imbibition in tubes or pores with rounded interior corners similarity solutions are possible to the full equation, which is readily solved numerically. Approximate analytical solutions are also possible under the constraints of the three regimes, which are clearly identified. The general analysis enables analytic solutions to many rounded-corner flows, and example solutions for steady flows, perturbed infinite columns, and imbibing flows over initially dry and prewetted surfaces are provided.
机译:在这项工作中,从分析角度重新审视了沿圆角内部拐角处的低重力等温毛细管流动问题。通过仔细选择几何长度比例尺并引入新的几何比例尺参数Tc,将Navier–Stokes方程简化为方便的O(1)形式,用于解析和数值解所有角半角α的值角圆度比λ可以使液体完全润湿。与以前的几种求解方法以及引用这些方法的大量后续研究相比,对问题的缩放和分析捕获了粘滞阻力的许多复杂的几何依赖性,并显着降低了对数值数据的依赖。通常,可以从较大的二阶非线性演化方程中识别出三种渐近状态:(I)锐角拐角区域;(II)窄角矩形剖面区域;(III)电影制度。可以观察到流量在各个方案之间进行转换,或者取决于系统,它们可能基本存在于单个方案中。可能令人惊讶的是,对于在具有圆形内部拐角的管或孔中吸收的情况,与完整方程式相似的解决方案是可能的,该方程很容易通过数值求解。在三个制度的约束下,也有可能确定近似的解析解。常规分析使得能够对许多圆形角流进行解析,并提供了示例性的稳定流,有限列扰动以及在最初干燥和预润湿的表面上吸收流的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号