首页> 外文OA文献 >Accuracy of Wave Speeds Computed from the DPG and HDG Methods for Electromagnetic and Acoustic Waves
【2h】

Accuracy of Wave Speeds Computed from the DPG and HDG Methods for Electromagnetic and Acoustic Waves

机译:从电磁和声波的DpG和HDG方法计算波速的准确度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study two finite element methods for solving time-harmonic electromagnetic and acoustic problems: the discontinuous Petrov-Galerkin (DPG) method and the hybrid discontinuous Galerkin (HDG) method.The DPG method for the Helmholtz equation is studied using a test space normed by a modified graph norm. The modification scales one of the terms in the graph norm by an arbitrary positive scaling parameter. We find that, as the parameter approaches zero, better results are obtained, under some circumstances. A dispersion analysis on the multiple interacting stencils that form the DPG method shows that the discrete wavenumbers of the method are complex, explaining the numerically observed artificial dissipation in the computed wave approximations. Since the DPG method is a nonstandard least-squares Galerkin method, its performance is compared with a standard least-squares method having a similar stencil.We study the HDG method for complex wavenumber cases and show how the HDG stabilization parameter must be chosen in relation to the wavenumber. We show that the commonly chosen HDG stabilization parameter values can give rise to singular systems for some complex wavenumbers. However, this failure is remedied if the real part of the stabilization parameter has the opposite sign of the imaginary part of the wavenumber. For real wavenumbers, results from a dispersion analysis for the Helmholtz case are presented. An asymptotic expansion of the dispersion relation, as the number of mesh elements per wave increase, reveal values of the stabilization parameter that asymptotically minimize the HDG wavenumber errors. Finally, a dispersion analysis of the mixed hybrid Raviart-Thomas method shows that its wavenumber errors are an order smaller than those of the HDG method.We conclude by presenting some contributions to the development of software tools for using the DPG method and their application to a terahertz photonic structure. We attempt to simulate field enhancements recently observed in a novel arrangement of annular nanogaps.
机译:我们研究了解决时谐电磁和声学问题的两种有限元方法:不连续的Petrov-Galerkin(DPG)方法和混合不连续的Galerkin(HDG)方法.Helmholtz方程的DPG方法使用一个以修改后的图范数。该修改通过任意正缩放参数缩放图形范数中的一项。我们发现,在某些情况下,随着参数接近零,可以获得更好的结果。对形成DPG方法的多个相互作用模板的色散分析表明,该方法的离散波数很复杂,从而解释了在计算出的波逼近中数值观察到的人工耗散。由于DPG方法是非标准最小二乘Galerkin方法,因此将其性能与具有相似模板的标准最小二乘方法进行了比较。我们研究了在复杂波数情况下的HDG方法,并说明了必须如何选择HDG稳定参数到波数。我们表明,对于一些复杂的波数,通常选择的HDG稳定参数值可以引起奇异系统。但是,如果稳定参数的实部与波数的虚部具有相反的符号,则可以纠正此故障。对于真实波数,给出了亥姆霍兹情况的色散分析结果。随着每波网格元素数量的增加,色散关系的渐近展开显示出稳定参数的值,该值渐近地最小化了HDG波数误差。最后,对混合混合Raviart-Thomas方法的色散分析表明,其波数误差比HDG方法小一个数量级。最后,我们总结了对使用DPG方法的软件工具及其应用的开发做出的贡献。太赫兹光子结构。我们试图模拟最近在环形纳米间隙的新颖排列中观察到的场增强。

著录项

  • 作者

    Olivares Nicole Michelle;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号