首页> 外文OA文献 >Charge separation and triplet exciton formation pathways in small molecule solar cells as studied by time-resolved EPR spectroscopy
【2h】

Charge separation and triplet exciton formation pathways in small molecule solar cells as studied by time-resolved EPR spectroscopy

机译:时间分辨EPR光谱研究小分子太阳能电池中的电荷分离和三重态激子形成途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh2)2, DTS(F2BTTh2)2, DTS(PTTh2)2, DTG(FBTTh2)2 and DTG(F2BTTh2)2) with the fullerene derivative PC61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh2)2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh2)2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh2)2 blend is in accordance with the slower charge separation dynamics observed in this blend.
机译:有机太阳能电池是一种有前途的可再生能源技术,具有机械灵活性和溶液可加工性的优点。如果要进一步提高效率,那么了解这些系统中的电子激发态和电荷分离途径至关重要。在这里,我们使用光感应电子顺磁共振(LEPR)光谱和密度泛函理论计算(DFT)研究小分子供体(DTS(FBTTh2))的混合物中的电子激发态,电荷转移(CT)动力学和三重态激子形成途径。如图2所示,具有富勒烯衍生物PC61BM的DTS(F2BTTh2)2,DTS(PTTh2)2,DTG(FBTTh2)2和DTG(F2BTTh2)2)。使用高频EPR,测定供体分子上正极化子的g-张量。将实验结果与DFT计算结果进行比较,结果表明极化子的自旋密度分布在二聚体或三聚体上。鉴定了归因于单重态CT状态的时间分辨EPR(TR-EPR)光谱,其极化模式显示了四个氟苯并噻二唑供体中相似的电荷分离动力学,而DTS(PTTh2)2共混物中的电荷分离较慢。使用TR-EPR,我们还研究了混合物中三重态激子的形成途径。极化图表明激子既来自系统间交叉(ISC)过程,又来自背电子转移(BET)过程。发现DTS(PTTh2)2共混物比BET含氟苯并噻二唑共混物包含更多的由BET形成的三重态激子。 DTS(PTTh2)2共混物中较高的BET三重态激子总数与在该共混物中观察到的较慢的电荷分离动力学一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号