首页> 外文OA文献 >Incorporating General Incident Knowledge into Automatic Incident Detection: A Markov Logic Network Method
【2h】

Incorporating General Incident Knowledge into Automatic Incident Detection: A Markov Logic Network Method

机译:将一般事件知识纳入自动事件检测:马尔可夫逻辑网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic incident detection (AID) algorithms have been studied for more than 50 years.However, due to the development in some competing technologies such as cell phone call based detection, video detection, the importance of AID in traffic management has been decreasing over the years. In response to such trend, AID researchers introduced new universal and transferability requirements in addition to the traditional performance measures. Based on these requirements, the recent effort of AID research has been focused on applying new artificial intelligence (AI) models into incident detection and significant performance improvement has been observed comparing to earlier models. To fully address the new requirements, the existing AI models still have some limitations including 1) the black-box characteristics, 2) the overfitting issue, and 3) the requirement for clean, large, and accurate training data. Recently, Bayesian network (BN) based AID algorithm showed promisingpotentials in partially overcoming the above limitations with its open structure and explicitstochastic interpretation of incident knowledge. But BN still has its limitations such as the enforced cause-effect relationship among BN nodes and its Bayesian type of logic inference. In2006, another more advanced statistical inference network, Markov Logic Network (MLN), was proposed in computer science, which can effectively overcome some limitations of BN and also bring the flexibility of applying various knowledge. In this study, an MLN-based AID algorithm is proposed. The proposed algorithm can interpret general types of traffic flow knowledge, not necessarily causality relationships. Meanwhile, a calibration method is also proposed to effective train the MLN. The algorithm is evaluated based on field data, collected at I-894 corridor in Milwaukee, WI. The results indicate promising potentials of the application of MLN in incident detection.
机译:自动事件检测(AID)算法已经研究了50多年,但是由于一些基于竞争的技术的发展,例如基于手机呼叫的检测,视频检测,AID在流量管理中的重要性一直在下降。为了应对这种趋势,AID研究人员除了采用传统的性能指标外,还提出了新的通用性和可转让性要求。基于这些要求,AID研究的最新成果一直集中在将新的人工智能(AI)模型应用于事件检测中,与早期模型相比,已观察到显着的性能改进。为了完全满足新的要求,现有的AI模型仍然存在一些局限性,包括1)黑盒特性,2)过拟合问题以及3)对干净,大型和准确的训练数据的要求。最近,基于贝叶斯网络(BN)的AID算法具有开放的结构和事件知识的显式随机解释,部分克服了上述局限性,显示出了广阔的发展前景。但是BN仍然有其局限性,例如BN节点之间的强制因果关系及其贝叶斯类型的逻辑推理。 2006年,计算机科学领域提出了另一个更高级的统计推断网络,即马尔可夫逻辑网络(MLN),它可以有效克服BN的某些局限性,并带来应用各种知识的灵活性。在这项研究中,提出了一种基于MLN的AID算法。所提出的算法可以解释交通流知识的一般类型,而不必解释因果关系。同时,还提出了一种校准方法来有效地训练MLN。该算法基于田野数据进行评估,该数据是在威斯康星州密尔沃基市I-894走廊收集的。结果表明,MLN在事件检测中的应用前景广阔。

著录项

  • 作者

    Liu Min;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号