首页> 外文OA文献 >Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.
【2h】

Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.

机译:通过推理时空连续性来增强对运动物体的跟踪和识别。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A framework for the logical and statistical analysis and annotation of dynamic scenes containing occlusion and other uncertainties is presented. This framework consistsudof three elements; an object tracker module, an object recognition/classification module and a logical consistency, ambiguity and error reasoning engine. The principle behind the object tracker and object recognition modules is to reduce error by increasing ambiguity (by merging objects in close proximity and presenting multipleudhypotheses). The reasoning engine deals with error, ambiguity and occlusion in a unified framework to produce a hypothesis that satisfies fundamental constraintsudon the spatio-temporal continuity of objects. Our algorithm finds a globally consistent model of an extended video sequence that is maximally supported by a voting function based on the output of a statistical classifier. The system resultsudin an annotation that is significantly more accurate than what would be obtainedudby frame-by-frame evaluation of the classifier output. The framework has been implementedudand applied successfully to the analysis of team sports with a singleudcamera.udKey words: Visual
机译:提出了一种用于包含遮挡和其他不确定性的动态场景的逻辑和统计分析与注释的框架。该框架由三部分组成。对象跟踪器模块,对象识别/分类模块以及逻辑一致性,模糊性和错误推理引擎。对象跟踪器和对象识别模块背后的原理是通过增加歧义来减少错误(通过合并紧邻的对象并显示多个 udhypothes)。推理引擎在统一的框架中处理错误,歧义和遮挡,以产生一个满足对象时空连续性的基本约束的假设。我们的算法根据统计分类器的输出,找到一个投票功能最大程度支持的扩展视频序列的全局一致模型。系统生成 udin的注释比通过分类器输出的逐帧评估所获得的注释准确得多。该框架已经实现 ud,并成功地将其应用于具有单个 udcamera的团队运动分析。 ud关键字:Visual

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号