首页> 外文OA文献 >An illustration of new methods in machine condition monitoring, Part I: Stochastic resonance
【2h】

An illustration of new methods in machine condition monitoring, Part I: Stochastic resonance

机译:机器状态监测新方法的说明,第一部分:随机共振

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There have been many recent developments in the application of data-basedudmethods to machine condition monitoring. A powerful methodology based on machine learningudhas emerged, where diagnostics are based on a two-step procedure: extraction of damage sensitiveudfeatures, followed by unsupervised learning (novelty detection) or supervised learningud(classification). The objective of the current pair of papers is simply to illustrate one state-of the-artudprocedure for each step, using synthetic data representative of reality in terms of sizeudand complexity. The first paper in the pair will deal with feature extraction.ududAlthough some papers have appeared in the recent past considering stochastic resonanceudas a means of amplifying damage information in signals, they have largely relied on ad hocudspecifications of the resonator used. In contrast, the current paper will adopt a principledudoptimisation-based approach to the resonator design. The paper will also show that a discreteuddynamical system can provide all the benefits of a continuous system, but also provide audconsiderable speed-up in terms of simulation time in order to facilitate the optimisationudapproach.
机译:在将基于数据的 udmethods应用于机器状态监视方面,最近有了许多发展。出现了一种基于机器学习 ud的强大方法,其中的诊断基于两个步骤:提取对损害敏感的 udfe特征,然后进行无监督学习(新颖性检测)或监督学习 ud(分类)。当前这对论文的目的仅仅是使用代表大小,复杂度的真实性的合成数据来说明每个步骤的最新技术。该对中的第一篇论文将涉及特征提取。 ud ud尽管最近出现了一些论文,其中考虑了随机共振 udas是一种放大信号中的损伤信息的手段,但它们很大程度上依赖于共振器的即席 udspec用过的。相反,当前的论文将在谐振器设计中采用基于原理/非优化的方法。本文还将表明,离散的 uddynamic的系统可以提供连续系统的所有好处,但是在仿真时间方面也可以提供 ud相当大的加速,以便于优化 udapproach。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号