首页> 外文OA文献 >Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring
【2h】

Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring

机译:使用应用于工业过程监控的局部频率特性对多个时间信号进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A general framework for regression modeling using localized frequency characteristics of explanatory variables is proposed. This novel framework can be used in any application where the aim is to model an evolving process sequentially based on multiple time series data. Furthermore, this framework allows time series to be transformed and combined to simultaneously boost important characteristics and reduce noise. A wavelet transform is used to isolate key frequency structure and perform data reduction. The method is highly adaptive, since wavelets are effective at extracting localized information from noisy data. This adaptivity allows rapid identification of changes in the evolving process. Finally, a regression model uses functions of the wavelet coefficients to classify the evolving process into one of a set of states which can then be used for automatic monitoring of the system. As motivation and illustration, industrial process monitoring using electrical tomography measurements is considered. This technique provides useful data without intruding into the industrial process. Statistics derived from the wavelet transform of the tomographic data can be enormously helpful in monitoring and controlling the process. The predictive power of the proposed approach is explored using real and simulated tomographic data. In both cases, the resulting models successfully classify different flow regimes and hence provide the basis for reliable online monitoring and control of industrial processes.
机译:提出了使用解释变量的局部频率特性进行回归建模的通用框架。这种新颖的框架可用于旨在基于多个时间序列数据按顺序对演化过程进行建模的任何应用程序。此外,该框架允许对时间序列进行转换和组合,以同时增强重要特性并降低噪声。小波变换用于隔离关键频率结构并执行数据约简。该方法具有高度的适应性,因为小波可以有效地从嘈杂的数据中提取局部信息。这种适应性可以快速识别不断变化的过程。最后,回归模型使用小波系数的函数将演化过程分类为一组状态中的一个,然后可将其用于系统的自动监视。作为动机和说明,考虑了使用电子断层摄影测量进行工业过程监控。该技术可提供有用的数据,而不会影响工业过程。从断层图像数据的小波变换得出的统计数据可以极大地帮助监控过程。使用真实的和模拟的层析成像数据来探索所提出方法的预测能力。在这两种情况下,生成的模型都成功地对不同的流态进行了分类,从而为可靠的在线监测和控制工业过程提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号