首页> 外文OA文献 >Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials
【2h】

Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials

机译:工程纳米材料危害评估和风险管理的结构 - 活动关系模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The widespread use of engineered nanomaterials (ENMs) for commercial purposes made human exposure to these materials almost inevitable. Moreover, the number of in vivo and in vitro studies reporting the potential adverse effects of exposure to ENMs is growing rapidly. Consequently, there is an urgent need to understand the interactions between ENMs and biological/environmental systems. Although the need to improve our understanding of the adverse health effects of ENMs has been recognised for some time, it has not been fully met to date. There are many reasons that have caused the hazard assessment of ENMs to fall behind the innovations in nanotechnology such as knowledge gaps exist in the field of nanotoxicology, difficulties in categorization of ENMs for toxicological considerations and uncertainties regarding the evaluation and regulation of potential risks of nanoparticles. The presence of a large number of ENMs with unknown risks has led to increased interest in the use of fast, cost-effective and efficient computational methods for predicting the toxic potential of ENMs. To that end, the potential use of in silico techniques, such as quantitative structure-activity relationship (QSAR), to model the relationship between biological activities and physicochemical characteristics of ENMs is investigated in this paper. The focus of this paper is on defining the current level of knowledge in (Q)SAR modeling of potential hazards of ENMs and demonstrating the use of (Q)SAR to predict the potential risks specific to ENMs with a case study. Moreover, it presents an overview of the (1) existing barriers currently limiting the development of robust nano-(Q)SAR models, (2) the current obstacles to regulatory acceptance of these models and (3) the integration of (Q)SARs into the risk assessment process. The result of this study demonstrated that the use of (Q)SAR modeling approach to model the toxicity of ENMs based on specific structural and compositional features greatly facilitates (1) filling knowledge gaps regarding the effect of specific parameters on the biological activities of ENMs, (2) predicting the potential risks associated with the exposure to ENMs, (3) classifying the ENMs according to their physicochemical properties and potential hazard degree and (4) reducing the risk by modifying ENMs based on the observed correlations between structural features and biological responses.
机译:工程纳米材料(ENM)广泛用于商业目的,使得人类不可避免地要接触这些材料。此外,报告暴露于ENM的潜在不利影响的体内和体外研究的数量正在迅速增长。因此,迫切需要了解ENM与生物/环境系统之间的相互作用。尽管一段时间以来人们已经认识到有必要改善我们对ENM的不良健康影响的了解,但迄今为止尚未完全满足。造成ENM危险性评估落后于纳米技术创新的原因很多,例如纳米毒理学领域存在知识空白,出于毒理学考虑而对ENM进行分类的困难以及关于纳米颗粒潜在风险的评估和调节的不确定性。大量具有未知风险的ENM的存在导致人们对使用快速,经济高效的高效计算方法来预测ENM的毒性潜力的兴趣日益浓厚。为此,本文研究了计算机技术(例如定量构效关系(QSAR))在生物活性和ENM的理化特性之间的关系建模的潜在用途。本文的重点是在定义ENM潜在危害的(Q)SAR建模中定义当前的知识水平,并通过案例研究证明使用(Q)SAR来预测特定于ENM的潜在风险。此外,它概述了(1)当前限制健壮的纳米(Q)SAR模型开发的现有障碍,(2)这些模型在监管接受方面的当前障碍,以及(3)(Q)SAR的集成进入风险评估过程。这项研究的结果表明,使用(Q)SAR建模方法基于特定的结构和组成特征来模拟ENM的毒性极大地促进了(1)填补关于特定参数对ENM的生物学活性影响的知识空白, (2)预测与ENM接触相关的潜在风险,(3)根据其理化性质和潜在危害程度对ENM进行分类,以及(4)根据观察到的结构特征与生物学反应之间的相关性通过修改ENM来降低风险。

著录项

  • 作者

    Oksel C; Ma CY; Wang XZ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号