首页> 外文OA文献 >Granule breakage in twin screw granulation: Effect of material properties and screw element geometry
【2h】

Granule breakage in twin screw granulation: Effect of material properties and screw element geometry

机译:双螺杆造粒中的颗粒破碎:材料特性和螺杆元件几何形状的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2017 Elsevier B.V.This study is the first to explicitly measure the influence of material dynamic yield strength (DYS) and screw element geometry on the breakage process in twin screw granulation. Granule breakage is the key mechanism for controlling granule size within the Twin Screw Granulator. Novel experiments which isolated breakage from other granulation rate processes were performed using conveying and distributive mixing element configurations and 2 and 3 mm cylindrical pellets of model materials (DYS from 0.5 to 137 kPa). Daughter size distributions and survivor pellet shape visualization was used to infer that the breakage mechanism in conveying elements (CE) is primarily edge chipping whereas in distributive mixing elements (DME), breakage is a combination of chipping and crushing. The maximum size of granule that could remain unbroken (3.49 mm for CE and 3.18 mm for DME) was determined by the largest available gap size in the element as measured by an analysis of the screw elements' open volume geometry. Below the maximum size, breakage probability varied inversely with granule strength up to 9 kPa. For granules stronger than 9 kPa DYS, breakage characteristics are independent of formulation properties and depend only on screw element geometry. This helps explain why twin screw granulation is more robust with respect to formulation changes compared to high shear wet granulation. Implications for using the results for both optimizing screw element design and calculating kinetic parameters for population balance modeling are discussed.
机译:©2017 Elsevier B.V.这项研究是第一个明确测量材料动态屈服强度(DYS)和螺杆元件几何形状对双螺杆造粒破碎过程影响的研究。颗粒破碎是控制双螺杆制粒机内颗粒大小的关键机制。使用输送和分布混合元件配置以及模型材料的2和3毫米圆柱丸(DYS从0.5到137kPa)进行了将其他造粒速率过程中的破损分离的新实验。使用子代尺寸分布和幸存的颗粒形状可视化来推断输送元件(CE)中的破碎机理主要是边缘碎裂,而在分布式混合元件(DME)中,破碎是破碎和压碎的组合。可以保持不破裂的最大颗粒尺寸(CE为3.49mm,DME为3.18mm),是通过对螺杆元件的开放体积几何形状进行分析所测得的元件中最大可用间隙尺寸而确定的。低于最大尺寸时,破损概率与颗粒强度高达9 kPa呈反比。对于大于9kPa DYS的颗粒,其断裂特性与配方性能无关,并且仅取决于螺杆元件的几何形状。这有助于解释为什么与高剪切湿法制粒相比,双螺杆制粒在配方变化方面更可靠。讨论了将结果用于优化螺杆元件设计和计算动力学参数以进行人口平衡建模的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号