首页> 外文OA文献 >Lean burn combustion monitoring strategy based on data modelling
【2h】

Lean burn combustion monitoring strategy based on data modelling

机译:基于数据建模的贫燃燃烧监测策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 IEEE.New designs of gas turbine lean burn combustors are under development to deliver lower emissions. To identify deterioration of combustion performance and engine health due to the increased complexity in these lean burn fuel system, one solution is through monitoring variation in Turbine Gas Temperature (TGT) profile. In this work, a data-driven monitoring strategy is designed and a prediction model for TGT associated with other crucial parameters is constructed. Due to limitations on sensing techniques and constraints on weight, only a limited number of TGT measurements downstream of combustion system are feasible in production engine, this along with gas swirling effects through the turbine, reduces the magnitude of temperature anomaly caused by an incipient fault. The model must meet EHM requirements on accuracy and sensitivity of the TGT monitoring model, be robust to influence of environmental changes. To accommodate these requirements, an adaptive model structure is proposed. A data-driven modelling framework with complexity control strategies for both a linear and a non-linear model are developed. The risk of overfitting is controlled by hyper-parameter optimization and cross-validation. The models are trained using data collected from combustor rig tests and test bed experiments. The fault mode behaviour is validated by augmenting the rig data with computational models of fault behaviour. Results show that with suitably selected range of data, and the application of the presented modelling framework, that a linear in parameter model provides an effective monitoring solution for lean burn systems. The adaptive modelling framework presented is also applicable to general data modelling tasks.
机译:©2016 IEEE。正在开发新的燃气轮机稀薄燃烧室设计,以减少排放。为了确定由于这些稀薄燃烧燃料系统的复杂性增加而导致的燃烧性能和发动机健康状况的恶化,一种解决方案是通过监视涡轮机气体温度(TGT)曲线的变化。在这项工作中,设计了一种数据驱动的监视策略,并构建了与其他关键参数关联的TGT预测模型。由于传感技术的局限性和重量的限制,在生产发动机中仅有限数量的燃烧系统下游的TGT测量是可行的,这与通过涡轮的气体旋流效应一起,减少了由初期故障引起的温度异常的程度。该模型必须满足EHM对TGT监视模型的准确性和敏感性的要求,并且对环境变化的影响具有鲁棒性。为了适应这些需求,提出了一种自适应模型结构。开发了具有线性和非线性模型复杂性控制策略的数据驱动建模框架。过拟合的风险由超参数优化和交叉验证控制。使用从燃烧器试验和试验台实验中收集的数据对模型进行训练。通过使用故障行为的计算模型扩充钻机数据来验证故障模式的行为。结果表明,在适当选择的数据范围和提出的建模框架的应用下,线性参数模型为稀薄燃烧系统提供了有效的监控解决方案。提出的自适应建模框架也适用于一般数据建模任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号