首页> 外文OA文献 >A new perspective on catalytic dehydrogenation of ethylbenzene: the influence of side-reactions on catalytic performance
【2h】

A new perspective on catalytic dehydrogenation of ethylbenzene: the influence of side-reactions on catalytic performance

机译:乙苯催化脱氢的新观点:副反应对催化性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dehydrogenation of ethylbenzene to styrene is a highly important industrial reaction and the focus of significant research in order to optimise the selectivity to styrene and minimise catalyst deactivation. The reaction itself is a complex network of parallel and consecutive processes including cracking, steam-reforming and reverse water-gas shift (RWGS) in addition to dehydrogenation. The goal of this investigation is to decouple the major processes occurring and analyse how side-reactions affect both the equilibrium of ethylbenzene dehydrogenation and the surface chemistry of the catalyst. Studies have employed a CrOx/Al2O3 catalyst and reactions have been conducted at 500, 600 and 700 °C. The catalyst and reaction have been investigated using elemental analysis, temperature programmed oxidation (TPO), temperature-programmed desorption (TPD), Raman spectroscopy, THz time-domain spectroscopy (THz-TDS), X-ray photoelectron spectroscopy (XPS), in situ infrared spectroscopy and on-line gas chromatography and mass spectrometry. The reaction profile shows an induction time corresponding to a cracking regime, followed by a dehydrogenation regime. The cracking period involves the activation of CrOx/Al2O3 catalysts for dehydrogenation activity through a number of processes: cracking of ethylbenzene over acid sites; coke deposition; reduction of chromium from Cr(VI) to Cr(III); steam reforming activity over the reduced catalyst; and reverse water-gas shift reaction. Each of these processes plays a critical role in the observed catalytic activity. Notably, the presence of CO2 evolved from the reduction of chromium by ethylbenzene and from the gasification of the deposited oxygen-functionalised coke results in the dehydrogenation reaction becoming partially oxidative, i.e. selectivity to styrene is enhanced by coupling of ethylbenzene dehydrogenation with the reverse water-gas shift reaction. Ethylbenzene cracking, coke gasification, steam-reforming and reverse water-gas shift determine the relative quantities of CO2, CO, H2 and H2O and hence affect the coupling of the reactions. Coke deposition during the cracking period lowers the catalyst acidity and may contribute to chromium reduction, hence diminishing the competition between acid and metal sites and favouring dehydrogenation activity.
机译:乙苯脱氢为苯乙烯是一个非常重要的工业反应,也是重要的研究重点,目的是优化对苯乙烯的选择性并最大程度地减少催化剂的失活。反应本身是一个复杂的并行和连续过程的网络,除脱氢外,还包括裂化,蒸汽重整和反向水煤气变换(RWGS)。这项研究的目的是使发生的主要过程脱钩,并分析副反应如何影响乙苯脱氢的平衡和催化剂的表面化学性质。研究已经使用了CrOx / Al2O3催化剂,并且反应已在500、600和700°C下进行。使用元素分析,程序升温氧化(TPO),程序升温解吸(TPD),拉曼光谱,THz时域光谱(THz-TDS),X射线光电子能谱(XPS)等技术对催化剂和反应进行了研究。原位红外光谱,在线气相色谱和质谱。反应曲线显示对应于裂化方案的诱导时间,随后是脱氢方案。裂化期包括通过许多过程活化CrOx / Al2O3催化剂的脱氢活性:在酸位上裂化乙苯;焦炭沉积将铬从六价铬还原为三价铬;在还原的催化剂上的蒸汽重整活性;和逆水煤气变换反应。这些过程中的每一个在观察到的催化活性中都起关键作用。值得注意的是,CO2的存在是由于乙苯还原铬和气化沉积的氧官能化焦炭而产生的,导致脱氢反应变成部分氧化,即通过将乙苯脱氢与反向水偶合来提高对苯乙烯的选择性。煤气变换反应。乙苯裂化,焦炭气化,蒸汽重整和水煤气的反向转换决定了CO2,CO,H2和H2O的相对量,因此影响了反应的耦合。裂化期间的焦炭沉积会降低催化剂的酸度,并可能有助于铬的还原,从而减少酸和金属位点之间的竞争并有利于脱氢活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号