首页> 外文OA文献 >Assessing methods for dealing with treatment crossover in clinical trials: A follow-up simulation study
【2h】

Assessing methods for dealing with treatment crossover in clinical trials: A follow-up simulation study

机译:评估在临床试验中处理治疗交叉的方法:后续模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Treatment switching commonly occurs in clinical trials of novel interventions, particularly in the advanced or metastatic cancer setting, which causes important problems for health technology assessment. Previous research has demonstrated which adjustment methods are suitable in specific scenarios, but scenarios considered have been limited. udObjectives: We aimed to assess statistical approaches for adjusting survival estimates in the presence of treatment switching in order to determine which methods are most appropriate in a new range of realistic scenarios, building upon previous research. In particular we consider smaller sample sizes, reduced switching proportions, increased levels of censoring, and alternative data generating models. udMethods: We conducted a simulation study to assess the bias, mean squared error and coverage associated with alternative switching adjustment methods across a wide range of realistic scenarios. udResults: Our results generally supported those found in previous research, but the novel scenarios considered meant that we could make conclusions based upon a more robust evidence base. Simple methods such as censoring or excluding patients that switch again resulted in high levels of bias. More complex randomisation-based methods (e.g. Rank Preserving Structural Failure Time Models (RPSFTM)) were unbiased when the “common treatment effect” held. Observational-based methods (e.g. inverse probability of censoring weights (IPCW)) coped better with time-dependent treatment effects but are heavily data reliant, and generally led to higher levels of bias in our simulations. Novel “two stage” methods produced relatively low bias across all simulated scenarios. All methods generally produced higher bias when the simulated sample size was smaller and when the censoring proportion was higher. All methods generally produced lower bias when switching proportions were lower. We find that the size of the treatment effect in terms of an acceleration factor has an important bearing on the levels of bias associated with the adjustment methods. udConclusions: Randomisation-based methods can accurately adjust for treatment switching when the treatment effect received by patients that switch is the same as that received by patients randomised to the experimental group. When this is not the case observational-based methods or simple twostage methods should be considered, although the IPCW is prone to substantial bias when the proportion of patients that switch is greater than approximately 90%. Simple methods such as censoring or excluding patients that switch should not be used.
机译:背景:治疗转换通常发生在新型干预措施的临床试验中,尤其是在晚期或转移性癌症环境中,这给卫生技术评估带来了重要问题。先前的研究表明,哪种调整方法适用于特定场景,但是所考虑的场景受到限制。 ud目标:我们旨在评估在进行治疗转换时调整生存估计的统计方法,以便在先前的研究基础上确定在新的现实场景中哪种方法最合适。特别是,我们考虑了较小的样本量,减少的转换比例,增加的审查级别以及替代的数据生成模型。 udMethods:我们进行了仿真研究,以评估在各种现实情况下与替代开关调整方法相关的偏差,均方误差和覆盖范围。 ud结果:我们的结果总体上支持以前的研究,但考虑到的新颖场景意味着我们可以根据更可靠的证据基础得出结论。诸如检查或排除再次切换的患者之类的简单方法会导致高度的偏见。当“共同治疗效果”保持不变时,更复杂的基于随机化的方法(例如,保留等级的结构失效时间模型(RPSFTM))是公正的。基于观察的方法(例如,权重的逆概率(IPCW))可以更好地解决与时间相关的治疗效果,但数据依赖严重,通常会导致我们的模拟中出现更高水平的偏差。新颖的“两阶段”方法在所有模拟方案中产生的偏差都相对较低。当模拟样本量较小且审查比例较高时,所有方法通常都会产生较高的偏差。当切换比例较低时,所有方法通常都产生较低的偏差。我们发现,就加速因子而言,治疗效果的大小对与调整方法相关的偏差水平具有重要影响。 结论:当切换患者接受的治疗效果与随机分配到实验组的患者接受的治疗效果相同时,基于随机化的方法可以准确调整治疗切换。如果不是这种情况,则应考虑采用基于观察的方法或简单的两阶段方法,尽管当转换患者的比例大于大约90%时,IPCW容易出现重大偏差。不应使用简单的方法,例如检查或排除切换的患者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号