首页> 外文OA文献 >Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects
【2h】

Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

机译:关于二维空间物体拓扑与基本方向关系的推理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints.
机译:增加定性空间计算的表达能力是满足应用要求的必不可少的步骤。这可以通过组合现有的演算来实现,我们可以使用来自多个演算的关系来表达空间信息。最大的挑战是开发对组合信息进行推理时正确且完整的推理算法。以前的工作主要研究的是合并的结石之间的相互作用很小或两个结石之一非常简单的情况。在本文中,我们解决了扩展空间对象的拓扑和方向信息的重要组合。我们在定性空间推理中结合了一些最著名的计算,用于表示拓扑信息的RCC8代数,以及用于方向信息的矩形代数(RA)和基数方向微积分(CDC)。我们考虑RCC8代数的两种不同解释,一种使用弱连接关系,另一种使用强连接关系。在这两种解释中,我们都表明,使用拓扑和方向信息进行推理是可以确定的,并保留在NP中。我们的计算复杂度结果揭示了RA和CDC之间以及弱RCC8和强RCC8模型之间的显着差异。以基本RCC8和基本CDC约束的组合为例:我们证明一致性问题仅在使用强RCC8代数并明确知道相应的基本RA约束时才存在于P中。

著录项

  • 作者

    Cohn AG; Li S; Liu W; Renz J;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号