The demand for silent bearing applications has resulted in the development of an effective damping layer between the outer ring of a rolling bearing and the surrounding structure. By means of numerical modeling using both FEM and BEM techniques an induction motor for household appliances is analyzed. A hybrid modeling approach combining measured structural velocities with a BEM formulation is used to validate the acoustic model. The numerical results are compared with results obtained from sound intensity measurements estimating the radiated sound power level for a running electric mo tor. It is found that a relatively simple boundary element model is capable of predicting the radiated sound power in a wide frequency range. By using BEM in combination with the radiation modes formulation it is found that a properly designed viscoelastic layer in the vicinity of the bearing is theoretically capable of reducing a fair amount of sound emitted by the motor.
展开▼