首页> 外文OA文献 >Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption
【2h】

Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption

机译:二元生物特征识别:一种估计高斯假设下性能曲线的分析框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the protection of biometric data has gained increased interest from the scientific community. Methods such as the fuzzy commitment scheme, helper-data system, fuzzy extractors, fuzzy vault, and cancelable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives or error-correcting codes (ECCs) and use a binary representation of the real-valued biometric data. Hence, the difference between two biometric samples is given by the Hamming distance (HD) or bit errors between the binary vectors obtained from the enrollment and verification phases, respectively. If the HD is smaller (larger) than the decision threshold, then the subject is accepted (rejected) as genuine. Because of the use of ECCs, this decision threshold is limited to the maximum error-correcting capacity of the code, consequently limiting the false rejection rate (FRR) and false acceptance rate tradeoff. A method to improve the FRR consists of using multiple biometric samples in either the enrollment or verification phase. The noise is suppressed, hence reducing the number of bit errors and decreasing the HD. In practice, the number of samples is empirically chosen without fully considering its fundamental impact. In this paper, we present a Gaussian analytical framework for estimating the performance of a binary biometric system given the number of samples being used in the enrollment and the verification phase. The error-detection tradeoff curve that combines the false acceptance and false rejection rates is estimated to assess the system performance. The analytic expressions are validated using the Face Recognition Grand Challenge v2 and Fingerprint Verification Competition 2000 biometric databases.
机译:近年来,生物数据的保护已引起科学界的越来越多的关注。已经提出了诸如模糊承诺方案,辅助数据系统,模糊提取器,模糊保险库和可取消生物特征识别等方法来保护生物特征识别数据。这些方法大多数都使用加密原语或纠错码(ECC),并使用实值生物特征数据的二进制表示形式。因此,两个生物特征样本之间的差异分别由汉明距离(HD)或从注册和验证阶段获得的二元向量之间的误码给出。如果HD小于(大于)决策阈值,则该对象被接受(拒绝)为真品。由于使用了ECC,因此此决策阈值被限制为代码的最大纠错能力,从而限制了错误拒绝率(FRR)和错误接受率的权衡。改善FRR的方法包括在注册或验证阶段使用多个生物特征样本。噪声被抑制,因此减少了误码的数量并减小了HD。实际上,在没有完全考虑其基本影响的情况下,根据经验选择样本的数量。在本文中,我们给出了一个高斯分析框架,该模型用于估计二进制生物识别系统的性能(给定注册和验证阶段使用的样本数量)。结合了错误接受和错误拒绝率的错误检测折衷曲线被估算出来,以评估系统性能。使用人脸识别Grand Challenge v2和Fingerprint Verification Competition 2000生物识别数据库对分析表达式进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号