首页> 外文OA文献 >Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions
【2h】

Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions

机译:无摩擦颗粒组件在不同变形条件下的静水压力和剪切特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stress- and structure-anisotropy (bulk) responses to various deformation modes are studied for dense packings of linearly elastic, frictionless, polydisperse spheres in the (periodic) triaxial box element test configuration. The major goal is to formulate a guideline for the procedure of how to calibrate a theoretical model with discrete particle simulations of selected element tests and then to predict another element test with the calibrated model (parameters).ud  Only the simplest possible particulate model material is chosen as the basic reference example for all future studies that aim at the quantitative modeling of more realistic frictional, cohesive powders. Seemingly unrealistic materials are used to exclude effects that are due to contact non-linearity, friction, and/or non-sphericity. This allows us to unravel the peculiar interplay of stress, strain, and microstructure, i.e. fabric.ud  Different elementary modes of deformation are isotropic, deviatoric (volume-conserving), and their superposition, e.g. a uniaxial compression test. Other ring-shear or stress-controlled (e.g. isobaric) element tests are referred to, but are not studied here. The deformation modes used in this study are especially suited for the bi- and triaxial box element test set-up and provide the foundations for understanding and predicting powder flow in many other experimental devices. The qualitative phenomenology presented here is expected to be valid, even clearer and magnified, in the presence of non-linear contact models, friction, non-spherical particles and, possibly, even for strong attractive/ adhesive forces.ud  The scalar (volumetric, isotropic) bulk properties, the coordination number and the hydrostatic pressure scale qualitatively differently with isotropic strain. Otherwise, they behave in a very similar fashion irrespective of the deformation path applied. The deviatoric stress response (i.e. stressanisotropy), besides its proportionality to the deviatoric strain, is cross-coupled to the isotropic mode of deformation via the structural anisotropy; likewise, the evolution of pressure is coupled via the structural anisotropy to the deviatoric strain, leading to dilatancy/compactancy. Isotropic/uniaxial over-compression or pure shear respectively slightly increase or reduce the jamming volume fraction below which the packing loses mechanical stability. This observation suggests a necessary generalization of the concept of the jamming volume fraction from a single value to a “wide range” of values as a consequence of the deformation history of the granular material, as “stored/memorized” in the structural anisotropy.ud  The constitutive model with incremental evolution equations for stress and structural anisotropy takes this into account. Its material parameters are extracted from discrete element method (DEM) simulations of isotropic and deviatoric (pure shear) modes as volume fraction dependent quantities. Based on this calibration, the theory is able to predict qualitatively (and to some extent also quantitatively) both the stress and fabric evolution in another test, namely the uniaxial, mixed mode during compression. This work is in the spirit of the PARDEM project funded by the European Union
机译:在(周期性)三轴箱单元测试配置中,研究了线性弹性,无摩擦,多分散球体的密集堆积对各种变形模式的应力和结构各向异性(体)响应。主要目标是为以下过程制定指南:如何使用选定的元素测试的离散粒子模拟来校准理论模型,然后使用校准后的模型(参数)来预测另一个元素测试。 ud ly只有最简单的颗粒模型材料被选择作为所有未来研究的基本参考实例,这些研究旨在对更现实的摩擦性,粘结性粉末进行定量建模。似乎不切实际的材料用于排除由于接触非线性,摩擦和/或非球形引起的影响。这使我们能够揭示应力,应变和微观结构(例如织物)的特殊相互作用。 ud不同的基本变形模式是各向同性的,偏斜的(体积守恒)及其叠加,例如单轴压缩试验。其他环剪切或应力控制(例如,等压)元素测试也已提及,但此处不进行研究。本研究中使用的变形模式特别适用于双轴和三轴箱形单元测试设置,并为理解和预测许多其他实验设备中的粉末流动提供了基础。在存在非线性接触模型,摩擦,非球形颗粒以及可能还具有强吸引力/粘附力的情况下,预期此处呈现的定性现象学是有效的,甚至更清晰,更放大。 ud标量(体积) (各向同性)的整体性质,配位数和静水压力规模随各向同性应变而定性地不同。否则,无论所应用的变形路径如何,它们的行为都非常相似。偏应力响应(即应力各向异性)除了与偏应变成比例外,还通过结构各向异性交叉耦合到各向同性变形模式;同样,压力的演化通过结构各向异性与偏应变耦合,从而导致膨胀/致密。各向同性/单轴过压缩或纯剪切分别略微增加或减少了卡阻体积分数,在该体积分数以下,填料失去了机械稳定性。该观察结果表明,由于粒状材料的变形历史(如“存储/存储”在结构各向异性中),干扰体积分数的概念必须从单个值扩展到值的“宽范围”。 ud with具有应力和结构各向异性的增量演化方程的本构模型考虑到了这一点。它的材料参数是从各向同性和偏斜(纯剪切)模式的离散元方法(DEM)模拟中提取的,作为体积分数相关量。基于此校准,该理论能够在另一项测试(即压缩过程中的单轴混合模式)中定性(并且在某种程度上还可以定量)预测应力和织物演变。这项工作符合欧洲联盟资助的PARDEM项目的精神

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号