The objective of the present work is the mathematical modeling of the dynamics of polymer molecules grafted on a solid boundary during polymer melt extrusion. This topic is closely related to the long-standing problem of polymer flow instabilities encountered in industry when extruding melts. In order to describe the behavior of the tethered chains, we introduce the bond vector probability distribution function (BVPDF) which appears to be a simple, yet effective mathematical 'tool'. The bond vector, i.e. the tangent vector to a polymer chain depending on the position along the chain and on time, describes the local geometry via its direction and the local stretching of the chain via its length. The BVPDF contains all information about the geometry of the ensemble of chains. Via averaging over the BVPDF we can calculate all interesting macrsocopic quantities, e.g. the thickness of and stress in the layer of tethered molecules. The time dependence of the BVPDF yields the time evolution of the system. We derive the equation of motion for the BVPDF taking into account all important mechanisms, such as reptation and (convective) constraint release. Besides that, we show that all macroscopic quantities of practical interest can be expressed via second order moments of this distribution function. ud
展开▼
机译:本工作的目标是在聚合物熔体挤出过程中接枝到固体边界上的聚合物分子动力学的数学模型。该主题与挤出熔体时工业中长期遇到的聚合物流动不稳定性问题密切相关。为了描述束缚链的行为,我们引入了键向量概率分布函数(BVPDF),它似乎是一个简单而有效的数学“工具”。键矢量,即聚合物链的切线矢量,取决于沿着链的位置和时间,通过其方向描述局部几何形状,并通过其长度描述链的局部拉伸。 BVPDF包含有关链整体几何形状的所有信息。通过对BVPDF进行平均,我们可以计算出所有有趣的宏观运动量,例如束缚分子层的厚度和应力。 BVPDF的时间依赖性产生了系统的时间演化。我们考虑到所有重要的机制,例如复制和(对流)约束释放,得出了BVPDF的运动方程。除此之外,我们表明可以通过该分布函数的二阶矩来表达所有实际感兴趣的宏观量。 ud
展开▼