首页> 外文OA文献 >Laser-driven ion acceleration from carbon nano-targets with Ti:Sa laser systems
【2h】

Laser-driven ion acceleration from carbon nano-targets with Ti:Sa laser systems

机译:采用Ti:sa激光系统的碳纳米管激光驱动离子加速

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past few decades, the generation of high energetic ion beams by relativistic intense laser pulses has attracted great attentions. Starting from the pioneering endeavors around 2000, several groups have demonstrated muliti-MeV (up to 58 MeV for proton by then) ion beams along with low transverse emittance and ps-scale pulse duration emitted from solid targets. Owing to those superior characteristics, laser driven ion beam is ideally suitable for many applications. However, the laser driven ion beam typically exhibits a large angular spread as well as a broad energy spectrum which for many applications is disadvantageous.ududThe utilization of nano-targets as ion source provides a number of advantages over micrometer thick foils. The presented PhD work was intended to investigate laser driven ion acceleration from carbon nano-targets and demonstrate the potential feasibility for biological studies. Two novel nano-targets are employed: nm thin diamond-like-carbon (DLC) foil and carbon nanotubes foam (CNF). Both are self-produced in the technological laboratory at Ludwig-Maximilians-Universität München. Well-collimated proton beams with extremely small divergence (half angle) of 2 degrees are observed from DLC foils, one orderudof magnitude lower as compared to micrometer thick targets. Two-dimensional particle-in-cellsimulations indicate a strong influence from the electron density distribution on the divergence of protons. This interpretation is supported by an analytical model. In the same studies, the highest maximum proton energy was observed with a moderate laser intensity as low as 5*10^18W/cm^2. Parallel measurements of laser transmission and reflection are used to determine laser absorption in the nano-plasma, showing a strong correlation to the maximum proton energy. This observation indicates significance of absorbed laser energy rather than incident laser intensity and is supported by an analytical model. The ion energy also depends on pulse duration, a reduced optimum pulse duration is found as compared to micrometer thick targets. This behavior is attributed to a reduction of transverse electron spread due to the reduction of thickness from micrometer to nanometer. These remarkable proton bunch characteristics enabled irradiating living cells with a single shot dose of up to 7 Gray in one nanosecond, utilizing the Advanced Titanium: sapphire LASer (ATLAS)system at Max-Planck-Institut of Quantum Optics (MPQ). The experiments represent the first feasibility demonstration of a very compact laser driven nanosecond proton source for radiobiological studies by using a table-top laser system and advanced nano-targets.ududFor the purpose of providing better ion sources for practical application, particularly in terms of energy increase, subsequent experiments were performed with the Astra Gemini laser system in the UK. The experiments demonstrate for the first time that ion acceleration can be enhanced by exploiting relativistic nonlinearities enabled by micrometer-thick CNF targets. When the CNF is attached to a nm-thick DLC foil, a significant increase of maximum carbon energy (up to threefold) is observed with circularly polarized laser pulses. A preferable enhancement of the carbon energy is observed with non-exponential spectral shape, indicating a strong contribution of the radiation pressure to the overall acceleration. In contrast, the linear polarization give rise to a more prominent proton acceleration. Proton energies could be increased by a factor of 2.4, inline with a stronger accelerating potential due to higher electron temperatures. Three-dimensional (3D) particle-in-cell (PIC) simulations reveal that the improved performance of the double-layer targets (CNF+DLC) can be attributed to relativistic self-focusing in near-critical density plasma. Interestingly, the nature of relativistic non-linearities, that plays a major role in laserwakefield-acceleration of electrons, can also apply to the benefit of laser driven ion acceleration.
机译:在过去的几十年中,相对论性强激光脉冲产生高能离子束备受关注。从2000年左右的开拓性努力开始,几个小组已经证明了muliti-MeV(到那时质子高达58 MeV)离子束,以及从固体靶标发出的低横向发射率和ps标度脉冲持续时间。由于具有这些优越的特性,激光驱动离子束非常适合许多应用。然而,激光驱动的离子束通常表现出较大的角展度以及较宽的能谱,这在许多应用中都是不利的。 ud ud利用纳米靶作为离子源比微米厚的箔具有许多优势。提出的博士论文旨在研究激光驱动的离子从碳纳米目标的加速,并证明生物学研究的潜在可行性。使用了两种新颖的纳米靶材:nm薄的类金刚石碳(DLC)箔和碳纳米管泡沫(CNF)。两者都是在路德维希-马克西米利安斯大学慕尼黑分校的技术实验室中自行生产的。从DLC箔观察到准直的质子束,其发散度(半角)为2度,极小,与微米厚的靶材相比,降低了一个数量级。二维单元格内粒子模拟表明电子密度分布对质子散度的强烈影响。这种解释得到分析模型的支持。在同一研究中,在低至5 * 10 ^ 18W / cm ^ 2的中等激光强度下观察到最高的最大质子能量。激光透射和反射的平行测量用于确定纳米等离子体中的激光吸收,显示出与最大质子能量的强相关性。该观察结果表明吸收的激光能量的重要性而非入射激光强度的重要性,并得到分析模型的支持。离子能量还取决于脉冲持续时间,与微米厚的靶材相比,发现减小的最佳脉冲持续时间。该行为归因于由于厚度从微米减小到纳米而导致的横向电子散布的减小。这些非凡的质子束特征使得可以利用Max-Planck-Institut of Quantum Optics(MPQ)的Advanced Titanium:sapphire LASer(ATLAS)系统,在一纳秒内以高达7格雷的单次照射剂量照射活细胞。通过使用台式激光系统和先进的纳米靶标,该实验代表了非常紧凑的激光驱动纳秒质子源用于放射生物学研究的首次可行性演示。 ud ud目的是为实际应用提供更好的离子源,特别是在就能量增加而言,随后的实验是使用英国的Astra Gemini激光系统进行的。实验首次证明,通过利用微米级CNF靶标实现的相对论非线性,可以提高离子加速度。当CNF附着在一个纳米厚度的DLC箔上时,圆偏振激光脉冲可观察到最大碳能量的显着增加(高达三倍)。在非指数光谱形状下观察到碳能量的优选增强,这表明辐射压力对整体加速度的强烈贡献。相反,线性极化导致更显着的质子加速。质子能量可以增加2.4倍,这是由于较高的电子温度而产生的更强的加速电势。三维(3D)单元内粒子(PIC)仿真显示,双层靶(CNF + DLC)的性能提高可归因于近临界密度等离子体中的相对论性自聚焦。有趣的是,相对论非线性的性质在电子的激光束场加速中起着主要作用,它也可以应用到激光驱动离子加速中。

著录项

  • 作者

    Bin Jianhui;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号