首页> 外文OA文献 >Picosecond pump dispersion management and jitter stabilization in a petawatt-scale few-cycle OPCPA system
【2h】

Picosecond pump dispersion management and jitter stabilization in a petawatt-scale few-cycle OPCPA system

机译:在皮瓦级规模的几周期OpCpa系统中进行皮秒泵色散管理和抖动稳定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The petawatt field synthesizer (PFS) is a high-power optical parametric chirped-pulseudamplification (OPCPA) system under development, which aims at generating fewcycleudpulses with high energies of several Joule. The availability of light pulses withudthese unique parameters will enable an efficient generation of even shorter attosecondudpulses with significantly higher photon flux than achievable today [1]. Notudonly the real-time observation, but also the control of charge transfer in molecularudsystems will become feasible for the first time [2].udThe technique for realizing the ambitious PFS specifications is short-pulse pumpedudOPCPA in mm-thin crystals. The reduced crystal thickness allows for ultra-broadbandudamplification. The pump-pulse duration is reduced to a picosecond—compared toud100 ps to nanosecond pump-pulse duration in conventional high power OPCPA systems.udThe shortened pulse duration facilitates higher pump intensities whereby anudefficient amplification in the mm-thin crystals is achieved.udThe demonstration of this novel scheme in the PFS project will allow its use inudthe extreme light infrastructure (ELI)[3]—a pan-European high-power laser project.udBased on the PFS technology for the front end, the ELI will generate exawatt peakpowerudpulses and therefore facilitate the study of laser-matter interaction in an unprecedentedudintensity range [4].udThis work describes the CPA-aspects of a suitable chirped pulse amplification (CPA)udpump laser for the PFS OPCPA system. The diode-pumped Yb:YAG amplifiers up toudan energy of 300 mJ (at 1030 nm) are presented in combination with the dispersionudmanagement. The application of spectral-amplitude shaping in conjunction withudan Yb:glass amplifier with broader bandwidth than Yb:YAG enables an unprecedentedudbandwidth of 3.5nm in the Yb:YAG amplifier at this energy level. Simulationsudshow that a similar bandwidth can be maintained for the full amplifier system.udThe pulses with 200 mJ could be compressed to 900 fs, close to the transform limit.udLater changes in the stretcher increase the bandwidth more and compression downudto 740 fs is demonstrated. To date, these are the highest peak power pulses generatedudin Yb:YAG. For the application as OPCPA pump, the so generated pulses areudfrequency doubled in a DKDP crystal.udAnother key aspect of this work is the synchronization of the OPCPA pump andudsignal pulses. In spite of optical synchronization of both pulses, a large timing fluctuationudbetween these pulses is measured at the first OPCPA stage. The high accuracyudjitter measurement setup and a series of measurements, which showed that theudstretcher/compressor setup is the main source of jitter, are presented. Theoreticaludinvestigations yield that the optical delay in a compressor is orders of magnitudeudmore sensitive to angle changes compared to free space propagation. This makes theudstretcher and compressor extremely sensitive for timing jitter caused by turbulentudair or mechanical instabilities. This novel insight helped us to significantly reduceudthe jitter to 100 fs and to demonstrate the feasibility of the PFS concept with firstudbroad-band OPCPA experiments.
机译:兆瓦级场合成器(PFS)是正在开发的一种高功率光学参量脉冲/增幅(OPCPA)系统,旨在产生具有几焦耳高能量的很少的周期脉冲。具有这些独特参数的光脉冲的可用性将能够以比目前可实现的更高的光子通量有效地产生甚至更短的阿秒/乌德脉冲[1]。不仅是实时观察,而且分子 ud系统中电荷转移的控制也将首次成为可行[2]。 ud实现宏伟的PFS规格的技术是短脉冲泵浦 udOPCPA,单位为mm-薄晶体。减小的晶体厚度允许超宽带放大。泵浦脉冲的持续时间减少到了皮秒,而传统大功率OPCPA系统的泵浦脉冲持续时间为 ud100 ps到纳秒。 ud在PFS项目中对该新颖方案的演示将使其可以用于极端光基础设施(ELI)[3] –泛欧洲大功率激光项目。 ud基于前端的PFS技术,ELI将产生毫瓦峰值功率 udpuls,因此有助于研究前所未有的强度范围内的激光物质相互作用[4]。 PFS OPCPA系统。结合色散/管理,提出了高达300 mJ(在1030 nm时)的二极管泵浦Yb:YAG放大器。频谱幅度整形与带宽比Yb:YAG宽的 udan Yb:glass放大器结合使用可以在此能量水平下在Yb:YAG放大器中实现3.5nm的前所未有的 udband宽度。模拟 ud表明整个放大器系统可以保持类似的带宽。 ud200 mJ的脉冲可以被压缩到900 fs,接近变换极限。 ud扩展器中的最新变化会增加带宽并降低压缩 udto演示了740 fs。迄今为止,这些是产生的最高峰值功率脉冲。对于用作OPCPA泵的应用,在DKDP晶体中,这样产生的脉冲是 udfrequency的两倍。 ud该工作的另一个关键方面是OPCPA泵和 udsignal脉冲的同步。尽管两个脉冲都实现了光学同步,但在第一OPCPA阶段仍会在这些脉冲之间测量较大的时序波动。本文介绍了高精度 udjitter测量设置和一系列测量,这些结果表明 udstretcher /压缩机设置是抖动的主要来源。理论研究表明,与自由空间传播相比,压缩机中的光学延迟对角度变化更为敏感。这使得 udstretcher和压缩机对于湍流 udair或机械不稳定性引起的定时抖动极为敏感。这种新颖的见解帮助我们将抖动降低到了100 fs,并通过第一个宽带OPCPA实验证明了PFS概念的可行性。

著录项

  • 作者

    Klingebiel Sandro;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号