首页> 外文OA文献 >Automatic approaches for microscopy imaging based on machine learningudand spatial statistics
【2h】

Automatic approaches for microscopy imaging based on machine learningudand spatial statistics

机译:基于机器学习的显微镜成像自动方法 ud和空间统计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most frequent ways to interact with the surrounding environment occursudas a visual way. Hence imaging is a very common way in order to gain informationudand learn from the environment. Particularly in the field of cellular biology, imagingudis applied in order to get an insight into the minute world of cellular complexes. Asuda result, in recent years many researches have focused on developing new suitableudimage processing approaches which have facilitates the extraction of meaningfuludquantitative information from image data sets. In spite of recent progress, but due toudthe huge data set of acquired images and the demand for increasing precision, digitaludimage processing and statistical analysis are gaining more and more importance inudthis field.udThere are still limitations in bioimaging techniques that are preventing sophisticatedudoptical methods from reaching their full potential. For instance, in the 3DudElectron Microscopy(3DEM) process nearly all acquired images require manual postprocessingudto enhance the performance, which should be substitute by an automaticudand reliable approach (dealt in Part I). Furthermore, the algorithms to localize individualudfluorophores in 3D super-resolution microscopy data are still in their initialudphase (discussed in Part II). In general, biologists currently lack automated and highudthroughput methods for quantitative global analysis of 3D gene structures.udThis thesis focuses mainly on microscopy imaging approaches based on MachineudLearning, statistical analysis and image processing in order to cope and improve theudtask of quantitative analysis of huge image data. The main task consists of buildinguda novel paradigm for microscopy imaging processes which is able to work in anudautomatic, accurate and reliable way.ududThe specific contributions of this thesis can be summarized as follows:ud• Substitution of the time-consuming, subjective and laborious task of manualudpost-picking in Cryo-EM process by a fully automatic particle post-pickingudroutine based on Machine Learning methods (Part I).ud• Quality enhancement of the 3D reconstruction image due to the high performanceudof automatically post-picking steps (Part I).ud• Developing a full automatic tool for detecting subcellular objects in multichannelud3D Fluorescence images (Part II).ud• Extension of known colocalization analysis by using spatial statistics in orderudto investigate the surrounding point distribution and enabling to analyze theudcolocalization in combination with statistical significance (Part II).udAll introduced approaches are implemented and provided as toolboxes which areudfree available for research purposes.
机译:与周围环境交互的最常见方式之一是视觉方式。因此,成像是获取信息从环境中学习的非常普遍的方式。特别是在细胞生物学领域,应用了成像技术以深入了解细胞复合物的微妙世界。结果,近年来,许多研究集中在开发新的合适的图像处理方法上,这些方法有助于从图像数据集中提取有意义的数字化信息。尽管最近取得了进展,但是由于 ud所获取图像的数据集巨大,并且对提高精度的需求,因此 udud处理和统计分析在该领域中越来越重要。 ud生物成像技术仍然存在局限性阻止了复杂的非典型方法发挥其全部潜力。例如,在3D udElectron Microscopy(3DEM)过程中,几乎所有获取的图像都需要手动后处理 udud以增强性能,这应该由自动 udand可靠的方法代替(第一部分中的论述)。此外,在3D超分辨率显微镜数据中定位单个 udfluorphores的算法仍处于初始 udphase(在第二部分中讨论)。总体而言,生物学家目前缺乏对3D基因结构进行定量全局分析的自动化和高通量方法。 ud本文主要研究基于Machine udLearning,统计分析和图像处理的显微镜成像方法,以应对和改善 udtask大量图像数据的定量分析。主要任务包括为显微镜成像过程建立一种新颖的范例,该范例能够以一种自动,准确和可靠的方式工作。 ud ud本论文的具体贡献可归纳如下: ud•替代通过基于机器学习方法的全自动粒子后拾取/ udroutine在Cryo-EM过程中手动后拾取的费时,主观且费力的任务(第一部分)。 ud•3D重建图像的质量增强到高性能的 udof自动后拾取步骤(第一部分)。 ud•开发一种用于检测多通道 ud3D荧光图像中亚细胞对象的全自动工具(第二部分)。 ud•通过使用空间扩展已知的共定位分析统计以便对周围点分布进行调查,并结合统计显着性来分析 udcolocalization(第二部分)。 ud所有引入的方法均已实现并作为工具包提供 udfree可用于研究目的。

著录项

  • 作者

    Norousi Ramin;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号