首页> 外文OA文献 >Molecular evolution in wild tomato species
【2h】

Molecular evolution in wild tomato species

机译:野生番茄品种的分子进化

摘要

Understanding the mechanisms of local adaptation of wild species is a central issue in evolutionary biology. DNA sequence data allows investigating the recent demographic history of organisms. Knowledge of this history makes it possible to quantify adaptive and deleterious mutations and to analyze local adaptation at candidate genes taking the demographic context into account. As modulation of gene expression is crucial for an organism’s survival during stress conditions, a next step to investigate adaptation is to study the expression profile of candidate genes. Wild species are more valuable systems to investigate local adaptation than model organisms as key issues in ecology and evolution of the later cannot be addressed properly in some cases. Wild tomato species provide several advantages when studying adaptation to abiotic stress: they grow in diverse environments – ranging from mesic to extremely arid conditions – and its genomic information is available from the cultivated relative.First, we investigated the potential for adaptation and the strength of purifying selection acting at eight housekeeping genes in four closely related wild tomato species (Solanum arcanum, S. chilense, S. habrochaites, S. peruvianum) occupying different habitats by analyzing the distribution of fitness effects of a new mutation. There is no evidence for adaptation at these loci, but we detect strong purifying selection acting on the coding regions in all four species. Additionally, we find evidence for negative selection acting on non-coding regions. However, the strength of selection varies among species. Our results suggest that the variance of the distribution of fitness effects differ between closely related species which inhabit different environments.Second, using a candidate gene approach, we studied the evolution the Asr (ABA /water stress/ripening induced) gene family in populations from contrasting environments of S. chilense and S. peruvianum. Asr genes have been reported to help the plant cope with waterdeficit in many ways and are therefore useful candidates to study adaptation to drought stress. The molecular variation in the Asr gene family indicates that Asr1 has evolved under strong purifying selection. Prior reports described evidence for positive election at Asr2 – we cannot confirm this hypothesis and argue that patterns of selection discovered previously were caused by demography. Asr4 shows patterns consistent with local adaptation in a S. chilense population that inhabits an extremely dry environment. A new member of the Asr family (Asr5) was also discovered and seems to exchange genetic material with Asr3 by gene conversion. Our results provide a good example for the dynamic nature of gene families in plants, especially of tandemly arrayed genes that are of importance in adaptation.Third, we investigated the expression profile following cold and drought stress as well as the regulatory regions of Asr genes and the dehydrin pLC30-15. The latter has been reported to be involved in water and chilling stress response. Populations from different habitats of S. chilense and S. peruvianum were analyzed. The gene expression of Asr4 seems to be adaptive to drought conditions. Analysis of the regulatory regions shows a conserved promoter region of Asr2 and positive selection acting on the downstream region of pLC30-15. We provide an example for expression variation in natural populations but also observe plasticity in gene expression. As noise in expression is common in stress responsive genes, we describe this expression plasticity to be advantageous in these stress-responsive genes.In conclusion, taking the potential distribution of the species into account, it appears that S. peruvianum (and S. habrochaites) can cope with a great variety of environmental conditions without undergoing local adaptation, whereas S. chilense (and S. arcanum) seem to undergo local adaptation more frequently. With Asr4 we identify a gene to be of potential interest for further functional studies and describe wild Solanum species to be of great interest as a genetic resource for its cultivated relatives.
机译:了解野生物种的局部适应机制是进化生物学的中心问题。 DNA序列数据可用于调查生物的近期人口统计历史。了解此历史记录可以量化适应性和有害突变,并考虑到人口统计学背景,分析候选基因的局部适应性。由于基因表达的调节对于生物体在压力条件下的生存至关重要,因此研究适应性的下一步是研究候选基因的表达谱。在某些情况下,野生生物是比模型生物更有价值的系统,可用于研究本地适应性,因为生态和进化的关键问题无法适当解决。在研究对非生物胁迫的适应性时,野生番茄物种具有多个优势:它们在多种环境中生长-从中等到极度干旱的条件-从栽培亲戚那里可获得其基因组信息。首先,我们研究了适应性的潜力和强度通过分析新突变体的适应性效应分布,筛选占据四个不同生境的四个密切相关的野生番茄物种(茄属植物,茄属植物,茄属植物,茄属植物)中的八个持家基因。在这些基因座上没有适应的证据,但是我们检测到对所有四个物种的编码区都起作用的强纯化选择。此外,我们发现负选择作用于非编码区域的证据。但是,选择的强度因物种而异。我们的研究结果表明,居住在不同环境中的密切相关物种之间,适应性效应分布的差异也有所不同。其次,我们使用候选基因方法研究了来自不同种群的Asr(ABA /水分胁迫/成熟诱导)基因家族的进化。 S. chilense和S. peruvianum的对比环境。据报道,Asr基因可以多种方式帮助植物应对水分不足,因此是研究干旱适应性的有用候选基因。 Asr基因家族中的分子变异表明Asr1在强纯化选择下已经进化。先前的报道描述了在Asr2进行积极选举的证据-我们无法证实这一假设,并认为先前发现的选择模式是由人口统计学引起的。 Asr4显示的模式与居住在极端干燥环境中的智利链球菌种群的局部适应一致。还发现了Asr家族的一个新成员(Asr5),似乎通过基因转换与Asr3交换了遗传物质。我们的结果为植物中基因家族的动态特性提供了一个很好的例子,尤其是对适应具有重要意义的串联排列的基因。第三,我们研究了干旱和干旱胁迫下的表达谱以及Asr基因的调控区域。脱水蛋白pLC30-15。据报道后者参与水和冷应激反应。分析了来自S. chilense和S. peruvianum的不同生境的种群。 Asr4的基因表达似乎适应干旱条件。调节区的分析显示了Asr2的保守启动子区和作用于pLC30-15下游区的正选择。我们提供了一个自然种群中表达差异的例子,但也观察了基因表达的可塑性。由于表达噪声在应激反应基因中很常见,因此我们将这种表达可塑性描述为在这些应激反应基因中是有利的。总之,考虑到物种的潜在分布,似乎出现了S. peruvianum(和S. habrochaites )可以应付各种各样的环境条件而无需进行局部适应,而智利链霉菌(S. chilense(和S.arcanum))似乎更经常进行局部适应。通过Asr4,我们确定了可能对进一步功能研究感兴趣的基因,并描述了野生茄属植物作为其栽培亲缘种的遗传资源而引起极大兴趣。

著录项

  • 作者

    Fischer Iris;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号