首页> 外文OA文献 >Nontrivial, nonnegative periodic solutions of a system of singular-degenerate parabolic equations with nonlocal terms
【2h】

Nontrivial, nonnegative periodic solutions of a system of singular-degenerate parabolic equations with nonlocal terms

机译:具有非局部项的奇异简并抛物方程组的非平凡非负周期解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the existence of nontrivial, nonnegative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray–Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species.
机译:我们研究了具有非局部项并满足Dirichlet边界条件的奇异退化抛物方程组的非平凡,非负周期解的存在。本文采用的方法基于Leray-Schauder拓扑度理论。但是,由于存在奇异性,因此更需要验证应用这种理论的条件。该系统可以看作是共享同一孤立领土的两个生物物种相互作用的可能模型,我们的结果给出了确保这两个物种共存的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号