首页> 外文OA文献 >Acoustic Data-driven Pronunciation Lexicon for Large Vocabulary Speech Recognition
【2h】

Acoustic Data-driven Pronunciation Lexicon for Large Vocabulary Speech Recognition

机译:用于大词汇量语音识别的声学数据驱动发音词典

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Speech recognition systems normally use handcrafted pronunciation lexicons designed by linguistic experts. Building and maintaining such a lexicon is expensive and time consuming. This paper concerns automatically learning a pronunciation lexicon for speech recognition. We assume the availability of a small seed lexicon and then learn the pronunciations of new words directly from speech that is transcribed at word-level. We present two implementations for refining the putative pronunciations of new words based on acoustic evidence. The first one is an expectation maximization (EM) algorithm based on weighted finite state transducers (WFSTs) and the other is its Viterbi approximation. We carried out experiments on the Switchboard corpus of conversational telephone speech. The expert lexicon has a size of more than 30,000 words, from which we randomly selected 5,000 words to form the seed lexicon. By using the proposed lexicon learning method, we have significantly improved the accuracy compared with a lexicon learned using a grapheme-to-phoneme transformation, and have obtained a word error rate that approaches that achieved using a fully handcrafted lexicon.
机译:语音识别系统通常使用由语言专家设计的手工发音词典。构建和维护这样的词典既昂贵又耗时。本文涉及自动学习用于语音识别的发音词典。我们假设有一个小的种子词典,然后直接从在单词级别转录的语音中学习新单词的发音。我们提供了两种基于声学证据来完善新单词的假定发音的实现。第一个是基于加权有限状态换能器(WFST)的期望最大化(EM)算法,另一个是其维特比逼近。我们在对话电话语音的总机语料库上进行了实验。专家词典的大小超过30,000个单词,从中我们随机选择了5,000个单词来构成种子词典。通过使用提出的词典学习方法,与使用字素到音素变换学习的词典相比,我们显着提高了准确性,并且获得了接近完全使用手工词典实现的单词错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号