首页> 外文OA文献 >Parallel and cascaded deep neural networks for text-to-speech synthesis
【2h】

Parallel and cascaded deep neural networks for text-to-speech synthesis

机译:用于文本到语音合成的并行和级联深度神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An investigation of cascaded and parallel deep neural networks for speech synthesis is conducted. In these systems, suprasegmental linguistic features (syllable-level and above) are processed separately from segmental features (phone-level and below). The suprasegmental component of the networks learns compact distributed representations of high-level linguistic units without any segmental influence. These representations are then integrated into a frame-level system using a cascaded or a parallel approach. In the cascaded network, suprasegmental representations are used as input to the framelevel network. In the parallel network, segmental and suprasegmental features are processed separately and concatenated at a later stage. These experiments are conducted with a standard set of high-dimensional linguistic features as well as a hand-pruned one. It is observed that hierarchical systems are consistently preferred over the baseline feedforward systems. Similarly, parallel networks are preferred over cascaded networks.
机译:对语音合成的级联和并行深度神经网络进行了研究。在这些系统中,超分段语言特征(音节水平及更高水平)与分段特征(电话水平及更低水平)分开处理。网络的超分段组件学习高级语言单元的紧凑分布式表示,而没有任何分段影响。然后,使用级联或并行方法将这些表示形式集成到帧级系统中。在级联网络中,超分段表示用作帧级网络的输入。在并行网络中,分段和超分段特征分别进行处理,并在以后阶段进行级联。这些实验是使用一组标准的高维语言功能以及一个手工修剪的功能进行的。可以看出,与基线前馈系统相比,始终优先选择分层系统。同样,并行网络优于级联网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号