首页> 外文OA文献 >Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system
【2h】

Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system

机译:使用蓝藻synechocystis sp通过含氧光合作用产生氢气。 pCC 6803在生物光电解槽(BpE)系统中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial electrolysis cells (MECs) represent an emerging technology that uses heterotrophic microbes to convert organic substrates into fuel products, such as hydrogen gas (H). The recent development of biophotovoltaic cells (BPVs), which use autotrophic microbes to produce electricity with only light as a substrate, raises the possibility of exploiting similar systems to harness photosynthesis to drive the production of H. In the current study we explore the capacity of the cyanobacterium Synechocystis sp. PCC 6803 to generate electrons by oxygenic photosynthesis and facilitate H production in a two-chamber bio-photoelectrolysis cell (BPE) system using the electron mediator potassium ferricyanide ([Fe(CN)]). The performance of a wild-type and mutant strain lacking all three respiratory terminal oxidase activities (rto) was compared under low or high salt conditions. The rto mutant showed a decrease in maximum photosynthetic rates under low salt (60% lower P than wild-type) but significantly increased rates under high salt, comparable to wild-type levels. Remarkably, rto demonstrated a 3-fold increase in (Fe[CN]) reduction rates in the light under both low and high salt compared to the wild-type. Yields of H and efficiency parameters were similar between wild-type and rto, and highest under high salt conditions, resulting in a maximum rate of H production of 2.23 ± 0.22 ml H l h (0.68 ± 0.11 mmol H [mol Chl] s). H production rates were dependent on the application of a bias-potential, but all voltages used were significantly less than that required for water electrolysis. These results clearly show that production of H using cyanobacteria is feasible without the need to inhibit photosynthetic O evolution. Optimising the balance between the rates of microbial-facilitated mediator reduction with H production may lead to long-term sustainable H yields.
机译:微生物电解池(MEC)代表了一种新兴技术,它利用异养微生物将有机基质转化为燃料产品,例如氢气(H)。生物光伏电池(BPV)的最新发展是利用自养微生物仅以光作为底物来发电,这增加了利用类似系统利用光合作用驱动H产生的可能性。在当前的研究中,我们探索了蓝藻集胞藻PCC 6803通过氧的光合作用产生电子,并在使用电子介质铁氰化钾([Fe(CN)])的两室生物光电解池(BPE)系统中促进H的产生。在低盐或高盐条件下,比较了缺乏所有三种呼吸末端氧化酶活性(rto)的野生型和突变菌株的性能。 rto突变体在低盐下显示最大光合速率降低(磷比野生型低60%),但在高盐下显着提高速率,与野生型水平相当。值得注意的是,与野生型相比,在低盐和高盐条件下,rto的光照下(Fe [CN])还原速率均增加了3倍。野生型和rto的H产量和效率参数相似,在高盐条件下最高,因此H的最大产生速率为2.23±0.22 ml H l h(0.68±0.11 mmol H [mol Chl] s)。氢的产生速率取决于偏压的施加,但是所使用的所有电压均显着低于水电解所需的电压。这些结果清楚地表明,使用蓝细菌生产H是可行的,而无需抑制光合作用O的进化。优化微生物促进的介质减少量与产氢量之间的平衡,可能会导致长期可持续的H产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号