首页> 外文OA文献 >Non-negative matrix factorization for semi-supervised data clustering
【2h】

Non-negative matrix factorization for semi-supervised data clustering

机译:半监督数据聚类的非负矩阵分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional clustering algorithms are inapplicable to many real-world problems where limited knowledge from domain experts is available. Incorporating the do- main knowledge can guide a clustering algorithm, consequently improving the quality of clustering. In this paper, we propose SS-NMF: a Semi-Supervised Non-negative Ma- trix Factorization framework for data clustering. In SS-NMF, users are able to provide supervision for clustering in terms of pairwise constraints on a few data objects spec- ifying whether they mustu22 or cannotu22 be clustered together. Through an iterative algorithm, we perform symmetric tri-factorization of the data similarity matrix to in- fer the clusters. Theoretically, we show the correctness and convergence of SS-NMF. Moveover, we show that SS-NMF provides a general framework for semi-supervised clustering. Existing approaches can be considered as special cases of it. Through extensive experiments conducted on publicly available datasets, we demonstrate the superior performance of SS-NMF for clustering.
机译:传统的聚类算法不适用于许多领域专家无法获得的现实问题。结合领域知识可以指导聚类算法,从而提高聚类的质量。在本文中,我们提出了SS-NMF:一种用于数据聚类的半监督非负矩阵分解框架。在SS-NMF中,用户可以根据几个数据对象上的成对约束来提供对群集的监视,以指定它们是否必须群集在一起。通过迭代算法,我们对数据相似性矩阵执行对称三因子分解以引入聚类。从理论上讲,我们证明了SS-NMF的正确性和收敛性。此外,我们展示了SS-NMF为半监督聚类提供了一个通用框架。现有方法可被视为其特殊情况。通过对可公开获得的数据集进行的广泛实验,我们证明了SS-NMF在聚类中的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号