首页> 外文OA文献 >Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface
【2h】

Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface

机译:量子力学/分子力学在溶液和酶中准确反应能量的最小自由能路径:平均力表面电位的顺序取样和优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN 2 reaction of Cl- + CH3 Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method. © 2008 American Institute of Physics.
机译:为了准确地确定酶和溶液相反应的反应路径及其能量学,我们提出了一种顺序采样和优化方法,该方法极大地提高了从头开始的量子力学/分子力学的最小自由能路径(QM / MM-MFEP ) 方法。在QM / MM-MFEP方法中,复杂反应系统的热力学由具有少量自由度的量子力学(QM)子系统的平均力(PMF)表面的电势来描述,有点像描述反应在气相中进行处理。 QM / MM-MFEP方法的主要计算成本来自对QM PMF及其梯度计算所需的分子力学(MM)子系统构象的统计采样。在我们新的顺序采样和优化方法中,我们旨在通过首先执行MM相空间采样,然后在MM构象的固定大小集合中优化QM子系统,来减少MM采样的数量,同时仍保持结果的准确性。 。然后将生成的QM优化结构用于获得MM子系统的更准确采样。依次进行顺序MM采样和QM优化的过程,直到收敛为止。使用固定大小的有限MM构象集合可以精确评估集合中的平均力及其梯度的QM潜力,从而避免了与统计平均相关的挑战,并显着加快了优化过程的收敛速度。为了进一步提高QM / MM-MFEP方法的准确性,Lu和Yang [Z. Lu和W. Yang,J. Chem。物理121,89(2004)]以近似但准确的方式描述了QM / MM静电相互作用,其计算成本可与传统的MM模拟相比。该新方法已成功应用于两个示例反应过程,即溶液中Cl- + CH3 Cl的经典SN 2反应和由4-草酰巴豆酸酯互变异构酶催化的反应的第二个质子转移步骤。使用这种新的顺序采样和QM / MM-MFEP优化方法的新方法计算出的无活化能与其他模拟方法(例如具有直接QM / MM动态采样的伞式采样技术)的结果非常吻合,证明了迭代QM的准确性/ MM-MFEP方法。 ©2008美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号