首页> 外文OA文献 >Optimizing bio-retention system locations for stormwater management using genetic algorithm
【2h】

Optimizing bio-retention system locations for stormwater management using genetic algorithm

机译:使用遗传算法优化雨水管理的生物保留系统位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As part of stormwater best management practices, bio-retention systems have been applied in a number of developed countries to minimize the change of hydrological regime due to urbanization. Optimization techniques have also been applied to determine the locations that give the most hydrological benefits. However, optimization tools are commonly built in together with specific hydrological models, usually restricting the choices and components of hydrological models. Furthermore, it is redundant to build another hydrological model that has a built-in optimization tool if a hydrological model, and possibly more comprehensive one, has already been developed for the study area. The objective of this study is to develop a genetic algorithm (GA) that is independent from and can therefore be coupled with any existing integrated distributed hydrological model to optimize the locations of bio-retention systems. The GA is written in Visual Basic considering factors such as topography, distance from a river and groundwater table depth. The alternative combinations of bio-retention locations suggested by the GA are used as inputs of an integrated distributed hydrological model. The combination that gives the lowest outlet discharge is then regarded as the best solution. We demonstrate the approach by taking Marina catchment in Singapore as a case study and feeding the GA with results from MIKESHE. Overall, the GA developed is not only transferable to other study area but also can also be coupled with any hydrological model that is the most suitable for that particular case study.
机译:作为雨水最佳管理做法的一部分,生物保留系统已在许多发达国家应用,以最大程度地减少由于城市化而引起的水文状况变化。优化技术也已应用于确定水文效益最大的位置。但是,优化工具通常与特定的水文模型一起内置,通常会限制水文模型的选择和组成。此外,如果已经为研究区域开发了一个水文模型,并且可能是更全面的模型,那么建立另一个具有内置优化工具的水文模型是多余的。这项研究的目的是开发一种遗传算法(GA),该算法独立于任何现有的集成分布式水文模型并可以与之结合,以优化生物保留系统的位置。 GA是用Visual Basic编写的,考虑了地形,距河的距离和地下水位的深度等因素。 GA建议的生物保留位置的替代组合用作综合分布式水文模型的输入。因此,将出口排量最低的组合视为最佳解决方案。我们以新加坡的滨海流域为案例研究,并向GA提供MIKESHE的结果来证明这种方法。总体而言,开发的遗传算法不仅可以转移到其他研究领域,而且还可以与最适合该特定案例研究的任何水文模型相结合。

著录项

  • 作者

    Trinh DH; Chui MTF;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号