首页> 外文OA文献 >A cooperative feature gene extraction algorithm that combines classification and clustering
【2h】

A cooperative feature gene extraction algorithm that combines classification and clustering

机译:a cooperative feature gene extraction algorithm that combines classification and clustering

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In feature gene selection, filtering model concerns classification accuracy while ignoring gene redundancy problem. On the other hand, gene clustering finds correlated genes without considering their predictive abilities. It is valuable to enhance their performances by the help of each other. We report a new feature gene extraction algorithm, namely Double-thresholding Extraction of Feature Gene (DEFG), that combines gene filtering and gene clustering. It firstly pre-select feature gene set from the original dataset. A modified gene clustering is then applied to refine this set. In the gene clustering, specific designs are employed to balance the predictive abilities and the redundancies of the extracted feature gene. We have tested DEFG on a microarray dataset and compared its performance with that of two benchmark algorithms. The experimental results show that DEFG is superior to them in terms of internal validation accuracy and external validation accuracy. Also, DEFG can generalize the pattern structure by a small number of training samples. ©2009 IEEE.
机译:在特征基因的选择中,过滤模型关注分类的准确性,而忽略了基因冗余的问题。另一方面,基因聚类发现相关基因而没有考虑其预测能力。在彼此的帮助下提高他们的表现是很有价值的。我们报告了一种新的特征基因提取算法,即特征基因的双阈值提取(DEFG),该算法结合了基因过滤和基因聚类。它首先从原始数据集中预选特征基因集。然后应用修饰的基因聚类来完善该集合。在基因聚类中,采用特定的设计来平衡提取的特征基因的预测能力和冗余度。我们已经在微阵列数据集上测试了DEFG,并将其性能与两种基准算法进行了比较。实验结果表明,DEFG在内部验证精度和外部验证精度方面均优于它们。而且,DEFG可以通过少量训练样本来概括模式结构。 ©2009 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号