首页> 外文OA文献 >Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks
【2h】

Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks

机译:鲁棒递归特征分解和子空间算法及其在无线传感器网络故障检测中的应用

摘要

The principal component analysis (PCA) is a valuable tool in multivariate statistics, and it is an effective method for fault detection in wireless sensor networks (WSNs) and other related applications. However, its online implementation requires the computation of eigendecomposition (ED) or singular value decomposition. To reduce the arithmetic complexity, we propose an efficient fault detection approach using the subspace tracking concept. In particular, two new robust subspace tracking algorithms are developed, namely, the robust orthonormal projection approximation subspace tracking (OPAST) with rank-1 modification and the robust OPAST with deflation. Both methods rely on robust M-estimate-based recursive covariance estimate to improve the robustness against the effect of faulty samples, and they offer different tradeoff between fault detection accuracy and arithmetic complexity. Since only the ED in the major subspace is computed, their arithmetic complexities are much lower than those of other conventional PCA-based algorithms. Furthermore, we propose new robust T 2 score and SPE detection criteria with recursive update formulas to improve the robustness over their conventional counterparts and to facilitate online implementation for the proposed robust subspace ED and tracking algorithms. Computer simulation and experimental results on WSN data show that the proposed fault detection approach, which combines the aforementioned robust subspace tracking algorithms with the robust detection criteria, is able to achieve better performance than other conventional approaches. Hence, it serves as an attractive alternative to other conventional approaches to fault detection in WSNs and other related applications because of its low complexity, efficient recursive implementation, and good performance. © 2012 IEEE.
机译:主成分分析(PCA)是进行多元统计的有价值的工具,并且是在无线传感器网络(WSN)和其他相关应用中进行故障检测的有效方法。但是,其在线实现需要计算本征分解(ED)或奇异值分解。为了降低算术复杂度,我们提出了一种使用子空间跟踪概念的有效故障检测方法。特别是,开发了两种新的鲁棒子空间跟踪算法,即具有等级1修改的鲁棒正交投影近似子空间跟踪(OPAST)和具有放气的鲁棒OPAST。两种方法都依赖于基于鲁棒M估计的递归协方差估计来提高针对故障样本影响的鲁棒性,并且它们在故障检测精度和算法复杂度之间提供了不同的权衡。由于仅计算主要子空间中的ED,因此它们的算术复杂度比其他传统的基于PCA的算法要低得多。此外,我们提出了具有递归更新公式的新的鲁棒性T 2评分和SPE检测标准,以提高其相对于常规方法的鲁棒性,并促进所提出的鲁棒子空间ED和跟踪算法的在线实现。对WSN数据的计算机仿真和实验结果表明,所提出的故障检测方法将上述鲁棒的子空间跟踪算法与鲁棒的检测标准相结合,能够比其他常规方法获得更好的性能。因此,由于它的低复杂性,有效的递归实现和良好的性能,它可以替代WSN和其他相关应用程序中的其他常规故障检测方法。 ©2012 IEEE。

著录项

  • 作者

    Wu HC; Tsui KM; Chan SC;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号