首页> 外文OA文献 >Caractérisation analytique et optimisation de codes source-canal conjoints
【2h】

Caractérisation analytique et optimisation de codes source-canal conjoints

机译:Caractérisationanalytiqueet optimization de code source-canal conjoints

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Joint source-channel codes are codes simultaneously providing data compression and protection of the generated bitstream from transmission errors. These codes are non-linear, as most source codes. Their potential is to offer good performance in terms of compression and error-correction for reduced code lengths.The performance of a source code is measured by the difference between the entropy of the source to be compressed and the average number of bits needed to encode a symbol of this source. The performance of a channel code is measured by the minimum distance between codewords or sequences of codewords, and more generally with the distance spectrum. The classic codes have tools to effectively evaluate these performance criteria. Furthermore, the design of good source codes or good channel codes is a largely explored since the work of Shannon. But, similar tools for joint source-channel codes, for performances evaluation or for design good codes remained to develop, although some proposals have been made in the past.This thesis focuses on the family of joint source-channel codes that can be described by automata with a finite number of states. Error-correcting quasi-arithmetic codes and error-correcting variable-length codes are part of this family. The way to construct an automaton for a given code is recalled.From an automaton, it is possible to construct a product graph for describing all pairs of paths diverging from some state and converging to the same or another state. We have shown that, using Dijkstra's algorithm, it is possible to evaluate the free distance of a joint code with polynomial complexity. For errors-correcting variable-length codes, we proposed additional bounds that are easy to evaluate. These bounds are extensions of Plotkin and Heller bounds to variable-length codes. Bounds can also be deduced from the product graph associated to a code, in which only a part of code words is specified.These tools to accurately assess or bound the free distance of a joint code allow the design of codes with good distance properties for a given redundancy or minimizing redundancy for a given free distance. Our approach is to organize the search for good joint source-channel codes with trees. The root of the tree corresponds to a code in which no bit is specified, the leaves of codes in which all bits are specified, and the intermediate nodes to partially specified codes. When moving from the root to the leaves of the tree, the upper bound on the free distance decreases, while the lower bound grows. This allows application of an algorithm such as branch-and-prune for finding the code with the largest free distance, without having to explore the whole tree containing the codes.The proposed approach has allowed the construction of joint codes for the letters of the alphabet. Compared to an equivalent tandem scheme (source code followed by a convolutional code), the codes obtained have comparable performance (rate coding, free distance) while being less complex in terms of the number of states of the decoder.Several extensions of this work are in progress: 1) synthesis of error-correcting variable-length codes formalized as a mixed linear programming problem on integers, 2) Explore the search space of error-correcting variable-length codes using an algorithm such as A* algorithm.
机译:联合源信道代码是同时提供数据压缩和保护生成的比特流免受传输错误影响的代码。与大多数源代码一样,这些代码是非线性的。它们的潜力是在压缩和纠错方面提供良好的性能,以减少代码长度。源代码的性能由要压缩的源的熵和编码a的平均位数之间的差来衡量。此来源的象征。信道码的性能是通过码字或码字序列之间的最小距离来衡量的,更普遍地,是通过距离频谱来衡量的。经典代码具有有效评估这些性能标准的工具。此外,自Shannon开展工作以来,人们一直在探索良好的源代码或良好的通道代码的设计。但是,尽管过去已经提出了一些建议,但仍需要开发用于联合源信道代码,用于性能评估或用于设计良好代码的类似工具。具有有限状态数的自动机。纠错准算术代码和纠错可变长度代码是该系列的一部分。回想了为给定代码构造自动机的方法。从一个自动机中,可以构造一个乘积图来描述从某状态偏离并收敛到相同或另一状态的所有路径对。我们已经证明,使用Dijkstra算法,可以用多项式复杂度评估联合代码的自由距离。对于纠错可变长度代码,我们提出了易于评估的其他范围。这些边界是Plotkin和Heller边界对可变长度代码的扩展。也可以从与代码关联的乘积图推导边界,其中只指定了一部分代码字。这些工具可以准确评估或限制联合代码的自由距离,从而可以设计具有良好距离特性的代码。给定冗余或最小化给定自由距离的冗余。我们的方法是用树来组织对良好的联合源通道代码的搜索。树的根对应于其中未指定位的代码,其中指定了所有位的代码叶以及对应于部分指定的代码的中间节点。从树的根部移到叶子时,自由距离的上限减小,而下限增大。这允许应用诸如分支和修剪之类的算法来查找具有最大自由距离的代码,而不必探索包含该代码的整棵树。所提出的方法允许构造用于字母的联合代码。与等效的串联方案(源代码后跟卷积代码)相比,所获得的代码具有可比的性能(速率编码,自由距离),同时在解码器的状态数量方面不那么复杂。正在进行中:1)校正为整数的混合线性规划问题形式的纠错可变长度代码的合成,2)使用诸如A *算法的算法探索纠错可变长度代码的搜索空间。

著录项

  • 作者

    Diallo Amadou Tidiane;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号