首页> 外文OA文献 >Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology
【2h】

Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

机译:氨氧化古菌的完整极性脂质:结构多样性在分子生态学中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and activity of these microbes in various modern environments. The use of cellular membrane lipids in molecular ecology studies provides added value to conventional (meta)genomic approaches, partly in the form of independence from biases associated with the extraction and analysis of nucleic acids. However, disentangling biomarker lipid signals derived from living and dead cells has remained a challenge. This thesis describes investigations aimed at developing the use of intact polar lipids (IPLs) in ecological studies of ammonia-oxidizing Crenarchaeota (AOA), as crenarchaeotal IPLs containing polar head groups bound to the core GDGT are assumed to best represent living Crenarchaeota. To this end, improvements to both indirect and direct GDGT-based IPL analyses were made, with the latter based largely on information obtained from four novel enrichment cultures of ammonia-oxidizing Crenarchaeota. The findings of these studies were applied to three different environmental settings: two California hot springs, the Arabian Sea oxygen minimum zone (OMZ), and the coastal North Sea. Comparisons between IPL and DNA-based molecular data reveal a more complete picture of the distribution and abundance of ammonia-oxidizing Crenarchaeota at those sites, in addition to demonstrating the general robustness of IPL analyses in molecular ecology studies.When IPL-GDGTs are analyzed (and quantified) after removal of the polar head group by hydrolysis, chromatographic fractionation of core and IPL GDGTs is first necessary in order to discern between dead and live GDGT signals. Conventional column fractionation schemes based on the separation of bacterial glyco- and phospholipids were found unsuitable for the separation of GDGT-based IPLs. Over activated silica, elution of GDGT-IPL standards with hexane:ethyl acetate (3:1, v/v), ethyl acetate, followed by methanol, was shown to yield fractions highly enriched in core, glyco-, and phospho-GDGTs, respectively. The inadequate separation of GDGT classes using old separation schemes could result in significant qualitative and quantitative differences, and thus the modified solvent elution protocol presented in this study should be used in future work.The ability to separate core and IPL-GDGTs allowed for the determination of the origin of crenarchaeol in terrestrial hot springs. The hypothesis that crenarchaeol was synthesized exclusively by mesophilic Crenarchaeota was called into question upon its discovery in terrestrial hot springs and its synthesis by the thermophilic AOA, “Ca. Nitrocaldus yellowstonii”. Recovery of abundant crenarchaeol in the IPL-GDGT fractions extracted from two California hot springs confirmed that crenarchaeol is indeed synthesized in situ. In addition, a correspondence between amoA gene and IPL-derived crenarchaeol abundances suggested that the crenarchaeol recovered from the hot springs was synthesized by ammonia-oxidizing Crenarchaeota.The characterization of ammonia-oxidizing Crenarchaeota has been hampered by difficulties in their enrichment, and therefore limited data exists on the IPL-GDGTs synthesized by these microbes in culture. Analysis of the recently enriched Group I.1b AOA, “Ca. Nitrososphaera gargensis”, revealed a GDGT distribution consisting almost exclusively of crenarchaeol and the crenarchaeol regio-isomer. This finding extends the taxonomic distribution of crenarchaeol synthesis to a new phylogenetic lineage within the Group I Crenarchaeota, and implicates members of this group as important contributors to crenarchaeol recovered from soils. In addition, lower amounts of a tentatively identified GDGT containing a cyclohexane moieties in addition to five cyclopentane moieties were present. The GDGT-associated polar headgroups consisted of monohexose, dihexose, phosphohexose and hexose-phosphohexose moieties in addition to headgroups consisting of mono- and dihexose sugars with an additional moiety of176 Dalton. Together, these data contribute substantially to the current knowledge of IPLs synthesized by AOA and support the hypothesis that crenarchaeol is specific to ammonia-oxidizers. TEX86 (a GDGT-based geochemical proxy used to reconstruct past sea surface temperatures)-derived temperatures calculated using the GDGT distribution of “Ca. N. gargensis” matched its original cultivation temperature of 46°C, however they did not change according to short term cultivation at 42°C and 50°C. This indicates that individual species may not adjust their membrane GDGTs dramatically according to temperature or that such a physiological adaptation would take much longer.Additional support for the specificity of crenarchaeol to AOA comes from analysis of IPL-GDGTs synthesized by additional ammonia-oxidizing Crenarchaeota enriched from marine sediments. Three novel enrichment cultures all synthesized abundant crenarchaeol in addition to other GDGTs commonly recovered from marine suspended particulate matter (SPM), and polar headgroups similar to those synthesized by Nitrosopumilus maritimus SCM1 and “Ca. N. gargensis”. A comparison of the GDGT distributions associated with each polar head group identified prior to, and including, this study revealed a commonality of hexose-phosphohexose crenarchaeol to all AOA, thereby pointing to this IPL as the ideal biomarker to track living ammonia-oxidizing Crenarchaeota in the environment.A HPLC/ESI-MS2 selected reaction monitoring method aimed at the detection of five different crenarchaeol-based IPLs was developed using extracts of biomass of “Ca. N. gargensis”, to screen for the presence of viable AOA through the Arabian Sea oxygen minimum zone (OMZ). The vertical distribution of hexose-phosphohexose crenarchaeol was marked by a prominent peak at the oxycline in addition to a less-pronounced peak at the bottom of the OMZ which matched peaks in Crenarchaeota 16S and amoA gene abundances. The general correspondence between IPL and gene profiles in this study demonstrates the robustness of HPH-crenarchaeol as a marker for living ammonia-oxidizing Crenarchaeota. A comparison of the depth distribution of PC-monoether ladderane IPL derived from anaerobic ammonia oxidizing (anammox) Bacteria and 16S rRNA gene abundances, which peaked at mid-OMZ depths, suggest that despite theoretical potential, little opportunity may exist for metabolic coupling between these groups at this location due to = 400 m vertical separation of their respective niches.A more detailed comparison of directly-analyzed crenarchaeol-based IPLs, IPL-derived GDGTs, and core GDGTs was made through the Arabian Sea OMZ. The results suggest that a portion of IPLs may actually persist as molecular fossils, and support the idea of differential degradation of glycolipids and phospholipids. This is in contrast with the assumption that all IPLs degrade rapidly upon cell senescence which has conventionally justified their use as general „life? markers. Despite a good correspondence at the surface (ca. 20 m depth), TEX86-calculated temperatures derived from core and IPL-derived GDGT distributions did not follow temperature changes with depth. A contribution of IPLs to the fossil GDGT pool could account for this.Increases in AOA abundance were notable during the winter months between November and February of an interrupted time series spanning the years 2002-2008. GDGT-based IPLs were used to track the seasonal occurrence and carbon-fixation activity of marine AOA in the coastal North Sea from 2007-2008. During this time crenarchaeol-based IPLs showed the same temporal distribution, regardless of headgroup, indicating that in this dynamic system a fossil contribution of IPLs to the GDGT pool is less likely than in the Arabian Sea. Incubations of North Sea water with 13C-bicarbonate resulted in label incorporation into the tricyclic biphytane derived from IPL-crenarchaeol, confirming that the Crenarchaeota in the North Sea surface waters actively fix bicarbonate during their winter blooms. Lower 13C-incorporation was observed in incubations containing nitrification inhibitors (Nserve and chlorate) further indicating that these Crenarchaeota are predominantly ammonia-oxidizers.To conclude, the present study demonstrates that intact polar GDGTs are excellent tools to study the ecology of Crenarchaeota in modern-day environments. Continued application of IPLs to molecular ecology studies will enhance our understanding of the role of AOA in both carbon and nitrogen cycling. In addition, constraining controls on the environmental distributions of GDGTs, including crenarchaeol and its regioisomer, will aid in a better understanding of their use in geochemical proxies, such as the TEX86 paleothermometer.
机译:非极端的Crenarchaeota是无处不在的,并且在许多现代系统中构成微生物组合的主要组成部分。几项研究分析了Crenarchaeota合成的甘油二烷基甘油四醚(GDGT)膜脂质,以解释这些微生物在各种现代环境中的存在,分布和活性。在分子生态学研究中使用细胞膜脂质为常规(元)基因组方法提供了附加价值,部分形式是独立于与核酸提取和分析相关的偏见。然而,解离源自活细胞和死细胞的生物标志物脂质信号仍然是一个挑战。本论文描述了旨在开发完整极性脂类(IPL)在氨氧化Crenarchaeota(AOA)生态学研究中的研究,因为假定包含与核心GDGT结合的极性头基的crenarchaeotal IPL最能代表活Crenarchaeota。为此,对基于GDGT的间接和直接IPL分析进行了改进,后者主要基于从氨氧化Crenarchaeota的四种新型富集培养物中获得的信息。这些研究的结果应用于三种不同的环境设置:两个加利福尼亚温泉,阿拉伯海最低氧气区(OMZ)和北海沿海地区。 IPL和基于DNA的分子数据之间的比较显示了这些位置氨氧化的Crenarchaeota分布和丰富度的更完整图景,此外还证明了IPL分析在分子生态学研究中的总体稳健性。并通过水解除去极性头基后,首先需要对核心和IPL GDGT进行色谱分离,以区分死的和活的GDGT信号。发现基于细菌糖和磷脂分离的常规色谱柱分级方案不适用于基于GDGT的IPL分离。在活化的二氧化硅上,显示出用己烷:乙酸乙酯(3:1,v / v),乙酸乙酯和甲醇洗脱的GDGT-IPL标准品产生的馏分高度富集核心,糖基和磷酸GDGT,分别。使用旧的分离方案无法充分分离GDGT类可能会导致明显的定性和定量差异,因此本研究中提出的改良溶剂洗脱方案应在未来的工作中使用。分离核心和IPL-GDGT的能力可用于确定头孢烯醇在地球温泉中的起源。当其在陆地温泉中被发现并由嗜热的AOA合成时,“ Crenarchaeol仅由中温Crenarchaeota合成”这一假说受到质疑。 Nitrocaldus yellowstonii”。从两个加州温泉提取的IPL-GDGT馏分中回收的丰富的Crenarchaeol证实,Crenarchaeol的确是原位合成的。此外,amoA基因与IPL衍生的Crenarchaeol丰度之间的对应关系表明,从温泉中回收的Crenarchaeol是通过氨氧化Crenarchaeota合成的。这些微生物在培养物中合成的IPL-GDGT的数据存在。对最近富集的I.1b组AOA(“ Ca。 Nitrososphaera gargensis”揭示了GDGT分布,几乎全部由Crenarchaeol和Crenarchaeol区域异构体组成。这一发现将Crenarchaeol合成的分类学分布扩展到了第I组Crenarchaeota中的一个新的系统发育谱系,并暗示该组成员是从土壤中回收的Crenarchaeol的重要贡献者。另外,存在较少量的经初步鉴定的除5个环戊烷部分外还包含环己烷部分的GDGT。 GDGT相关的极性头基由单己糖,二己糖,磷酸己糖和己糖-磷酸己糖部分组成,此外还包括由单己糖和二己糖糖组成的头基,其附加部分为176道尔顿。这些数据加在一起,极大地促进了AOA合成的IPL的当前知识,并支持了Crenarchaeol特定于氨氧化剂的假设。 TEX86(一种基于GDGT的地球化学代理,用于重建过去的海面温度)得出的温度是使用“加利福尼亚州”的GDGT分布计算得出的。加尔各斯猪笼草”与其原始培养温度46°C相匹配,但是根据42°C和50°C的短期栽培情况,它们没有变化。这表明单个物种可能不会根据温度显着调节其膜GDGT,否则这种生理适应将需要更长的时间。对Crenarchaeol对AOA的特异性的其他支持来自对由氨水氧化的Crenarchaeota富集而合成的IPL-GDGTs的分析。来自海洋沉积物。除通常从海洋悬浮颗粒物(SPM)中回收的其他GDGT以及类似于由Nitrosopumilus maritimus SCM1和Ca合成的极性首基外,三种新颖的浓缩培养物均合成了丰富的Crenarchaeol。 Nargargensis”。这项研究之前(包括该研究)确定的与每个极性头部相关的GDGT分布的比较揭示了己糖-磷酸己糖脑戊烯醇与所有AOA的共通性,从而指出该IPL是追踪活体中氨氧化丙酸杆菌的理想生物标记。利用“Ca。”的生物质提取物,开发了一种HPLC / ESI-MS2选择性反应监测方法,旨在检测五种不同的基于千古手感的IPL。 Nargerensis”,通过阿拉伯海最低氧气区域(OMZ)筛选是否存在可行的AOA。己糖-磷酸己糖头孢烯醇的垂直分布的特征是,在氧茶碱处有一个突出的峰,此外在OMZ底部的发音不那么明显的峰与Crenarchaeota 16S和amoA基因丰度的峰相匹配。在这项研究中,IPL和基因谱之间的一般对应性证明了HPH-克那萘酚作为氨氧化Crenarchaeota的标记物的稳健性。对厌氧氨氧化细菌(厌氧菌)和16S rRNA基因丰度(在OMZ深度中部达到峰值)衍生的PC-单醚梯烷IPL深度分布的比较表明,尽管有理论潜力,但这些之间的代谢耦合可能很少由于各自ni的垂直间隔= 400 m,因此在该位置上进行了分组。通过阿拉伯海OMZ对直接分析的基于千古酚的IPL,IPL衍生的GDGT和核心GDGT进行了更详细的比较。结果表明,IPL的一部分实际上可能以分子化石的形式存在,并支持糖脂和磷脂的差异降解。这与所有IPL在细胞衰老后迅速降解的假设相反,该假设通常证明了其作为一般“生命”的用途。标记。尽管表面(大约20 m深度)具有良好的对应关系,但从岩心和IPL得出的GDGT分布得出的TEX86计算温度并未随温度随深度的变化而变化。 IPL对化石GDGT池的贡献可能是造成这种情况的原因.11月至2月的冬季,即2002-2008年间的时间序列中断,AOA丰度明显增加。基于GDGT的IPL被用来追踪北海沿海地区2007-2008年海洋AOA的季节性发生和固碳活动。在这段时间里,基于头孢烯醇的IPL表现出相同的时间分布,而与头端组无关,这表明在该动态系统中,IPL对GDGT池的化石贡献比在阿拉伯海中低。将北海水与13C-碳酸氢盐一起孵育导致标签掺入衍生自IPL-crenarchaeol的三环双phytantane中,这证实了北海地表水中的Crenarchaeota在冬季开花时能积极固定碳酸氢盐。在含有硝化抑制剂(Nserve和氯酸盐)的培养物中观察到了较低的13C掺入,这进一步表明这些Crenarchaeota主要是氨氧化剂。总而言之,本研究表明,完整的极性GDGT是研究Crenarchaeota现代生态学的极好工具。日间环境。 IPL在分子生态学研究中的持续应用将增进我们对AOA在碳和氮循环中的作用的理解。此外,限制对GDGTs的环境分布的控制,包括Crenarchaeol及其区域异构体,将有助于更好地了解其在地球化学代理中的使用,例如TEX86古温度计。

著录项

  • 作者

    Pitcher A.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号