首页> 外文OA文献 >About the categorization of latent variables in hybrid choice models
【2h】

About the categorization of latent variables in hybrid choice models

机译:关于混合选择模型中潜在变量的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although hybrid choice models are fairly popular nowadays, the way in which different types of latent variables are considered into the utility function has not been extensively analysed. Latent variables accounting for attitudes resemble socioeconomic characteristics and, therefore, systematic taste variations and categorizations of the latent variables should be considered. Nevertheless, categorizing a latent variable is not an easy subject, as these variables are not observed and consequently exhibit an intrinsic variability. Under these circumstances it is not possibly to assign an individual to a specific group, but only to establish a probability with which an individual should be categorized in given way. In this paper we explore different ways to categorize individuals based on latent characteristics, focusing on the categorization of latent variables. This approach exhibits as main advantage (over latent-classes for instance) a clear interpretation of the function utilized in the categorization process, as well as taking exogenous information into account. Unfortunately, technical issues (associated with the estimation technique via simulation) arise when attempting a direct categorization. We propose an alternative to attempt a direct categorization of latent variables (based on an auxiliary variable) and conduct a theoretical and empirical analysis (two case studies), contrasting this alternative with other approaches (latent variable-latent class approach and latent classes with perceptual indicators approach). Based on this analysis, we conclude that the direct categorization is the superior approach, as it offers a consistent treatment of the error term, in accordance with underlying theories, and a better goodness-of-fit.
机译:尽管混合选择模型在当今相当流行,但尚未广泛分析将不同类型的潜在变量纳入效用函数的方式。解释态度的潜在变量类似于社会经济特征,因此,应考虑系统性的口味变化和潜在变量的分类。然而,对潜在变量进行分类并不是一件容易的事,因为这些变量没有被观察到,因此呈现出内在的可变性。在这种情况下,不可能将一个人分配到一个特定的组中,而只是确定一个应该以给定方式对一个人进行分类的概率。在本文中,我们探讨了基于潜在特征对个人进行分类的不同方法,重点在于潜在变量的分类。这种方法的主要优势(例如,相对于潜在类而言)表现出对分类过程中使用的功能的清晰解释,并考虑了外部信息。不幸的是,在尝试直接分类时会出现技术问题(与通过模拟进行的估算技术相关)。我们提出了一种替代方法,尝试对潜在变量(基于辅助变量)进行直接分类,并进行理论和经验分析(两个案例研究),并将此替代方法与其他方法(隐性变量-潜在类方法和具有感知性的潜在类)进行对比指标方法)。根据此分析,我们得出结论,直接分类是更好的方法,因为它可以根据基础理论对误差项进行一致的处理,并且具有更好的拟合优度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号