首页> 外文OA文献 >A simple bootstrap method for constructing nonparametric confidence bands for functions
【2h】

A simple bootstrap method for constructing nonparametric confidence bands for functions

机译:一种简单的bootstrap方法,用于构造函数的非参数置信带

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Standard approaches to constructing nonparametric confidence bands for functions are frustrated by the impact of bias, which generally is not estimated consistently when using the bootstrap and conventionally smoothed function estimators. To overcome this problem, it is common practice to either undersmooth, so as to reduce the impact of bias, or oversmooth, and thereby introduce an explicit or implicit bias estimator. However, these approaches and others based on nonstandard smoothing methods, complicate the process of inference, for example by requiring the choice of new, unconventional smoothing parameters and, in the case of undersmoothing, producing relatively wide bands. In this paper we suggest a new approach, which exploits to our advantage one of the difficulties that, in the past, has prevented an attractive solution to the problem - the fact that the standard bootstrap bias estimator suffer from relatively high-frequency stochastic error. The high frequency, together with a technique based on quantiles, can be exploited to dampen down the stochastic error term, leading to relatively narrow, simple-to-construct confidence bands.
机译:构造函数的非参数置信带的标准方法因偏见的影响而受挫,通常在使用自举法和常规平滑函数估计器时无法始终如一地进行估计。为了克服这个问题,通常的做法是要么平滑不足,以减少偏差的影响,要么平滑过度,从而引入显式或隐式偏差估计器。但是,这些方法以及其他基于非标准平滑方法的方法,例如通过要求选择新的,非常规的平滑参数,以及在欠平滑的情况下,产生相对较宽的频带,使推理过程变得复杂。在本文中,我们提出了一种新的方法,该方法利用了我们的优势之一,该困难在过去阻止了对该问题的有吸引力的解决方案-标准自举偏差估计器会遭受相对较高的高频随机误差。可以利用高频以及基于分位数的技术来抑制随机误差项,从而导致相对狭窄,易于构建的置信带。

著录项

  • 作者

    Hall Peter; Horowitz Joel;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号